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Journées de Géométrie Algorithmique
Aussois, Décembre 2017
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[Singh, Mémoli, Carlsson 2007]

Reeb Graphs and Mapper

visualize topology on
the data directly

[Reeb 1946]
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Applications

−→ clustering

−→ feature selection

Principle: identify statistically relevant sub-
populations through patterns (flares, loops)

flares

loops

−→ visualization



Applications

breast cancer subtype identification
[Nicolau et al. 2011]

protein folding pathways
[Yao et al. 2009]



Applications

Data Skeletonization
[Ge et al. 2011]



Applications

Burning regions of lean hydrogen flame over time
[Weber et al. 2011]
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Prop: Rf (X) is a graph if
(X, f) is of Morse type

Reeb Graphs
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x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1(f(x)) ]

Def: Rf (X) = X/ ∼

R

fX
Pixelized Reeb graph

Reeb Graphs

Singleton → interval: f−1(I)

Caveat: computation from point cloud is difficult

→ Proxy: Mapper
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Mapper (continuous setting)

Input:

- continuous function f : X → R

- cover I of im(f) by open intervals: im(f) ⊆
⋃
I∈I I

• Compute pullback cover U of X: U = {f−1(I)}I∈I

• Refine U by separating the connected components

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

- topological space X



Mapper (discrete setting)

Input:

• Compute pullback cover U of P : U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various connected
components in G

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

- point cloud P ⊆ X with metric dP

(intersections materialized
by data points)

- continuous function f : P → R

- cover I of im(f) by open intervals: imf ⊆
⋃
I∈I I

→ connected cover V
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Mapper

δ

G = δ-neighborhood graph

Mf (G, I)

Mapper (discrete setting)



- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

lens or filter

Parameters



- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

uniform cover I:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

r

g = 30%

I

R
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Parameters



- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

uniform cover I:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

r

g = 30%

I

R
lens or filter

Parameters

In practice: trial-and-error



Examples

r = 0.3, g = 20%

f̂ = density estimator

δ = 0.1% δ = 1% δ = 10%
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T

DB

UB

L

Def: Dg (Rf ) = bag-of-features descriptor for Rf (X):

DB(Rf ) ←→ downward branches

UB(Rf ) ←→ upward branches

T(Rf ) ←→ trunks (cc)

L(Rf ) ←→ loops

Extended Persistence Diagram

DB

UB

L

T



Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

Extended Persistence Diagram
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Construction uses extended persistence: [Cohen-Steiner, Edelsbrunner, Harer 2008]

- family of excursion sets (sublevel then superlevel sets) of Reeb graph

- use homological algebra to encode the evolution of the topology of the family

DB: appears/dies in sublevels

UB: appears/dies in superlevels

T/L: appears in sublevels, dies in superlevels

Extended Persistence Diagram

T

DB

UB

L



Metric for Extended Persistence Diagrams



Matched pair (x, y) ∈M : c(x, y) = ‖x− y‖∞
Unmatched point z ∈ X t Y : c(z) = ‖z − z̄‖∞
c(M) = max{ max(x, y) c(x, y), maxz c(z) }

Partial matching M : Dg ↔ Dg ′

Metric for Extended Persistence Diagrams



Matched pair (x, y) ∈M : c(x, y) = ‖x− y‖∞
Unmatched point z ∈ X t Y : c(z) = ‖z − z̄‖∞
c(M) = max{ max(x, y) c(x, y), maxz c(z) }

Partial matching M : Dg ↔ Dg ′

Def: bottleneck distance:

dB(Dg ,Dg ′) = infM :Dg↔Dg ′ c(M)

Metric for Extended Persistence Diagrams



Thm (stability): [Bauer, Ge, Wang 2013]

Metric Properties

dB(Dg (Rf ),Dg (Rg)) ≤ 6 dGH(Rf ,Rg)
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Metric Properties
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Thm (stability): [Bauer, Ge, Wang 2013]

Metric Properties

dB(Dg (Rf ),Dg (Rg)) ≤ 6 dGH(Rf ,Rg)

Note: dB(Dg (·),Dg (·)) is only a pseudometric on Reeb graphs

Thm: [C., Oudot 2016]

dB(Dg (·),Dg (·)) is locally a metric equivalent to dGH



R

Reminder: Mapper ≡ pixelized Reeb graph

R

Structure of Mapper



Def: Given X, f, I:

Structure of Mapper

Dg (Mf ) =
(
DB(Rf ) \QDB

I
)
∪
(
UB(Rf ) \QUB

I
)
∪
(
L(Rf ) \QL

I
)



QDB
I

QUB
I

QL
I

QDB
I =

⋃
I∈I

Q+

Ĩ∪I+ QL
I =

⋃
I,J∈I
I∩J 6=∅

Q−I∪J

Ĩ
I+

I−

Def: Given X, f, I:

QUB
I =

⋃
I∈I

Q−
I−∪Ĩ

Structure of Mapper

Dg (Mf ) =
(
DB(Rf ) \QDB

I
)
∪
(
UB(Rf ) \QUB

I
)
∪
(
L(Rf ) \QL

I
)
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Thm: [C., Oudot 2016]

DB ←→ downward branches
UB ←→ upward branches

T ←→ trunks (cc)

L ←→ loops

Structure of Mapper

Dg (Mf ) provides a bag-of-features descriptor for Mf (X, I):
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Thm: [C., Oudot 2016]

DB ←→ downward branches
UB ←→ upward branches

T ←→ trunks (cc)

L ←→ loops

Structure of Mapper

Dg (Mf ) provides a bag-of-features descriptor for Mf (X, I):

T

L

DB
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Cor: Dg (Mf ) = Dg (Rf ) whenever the resolution r of I is smaller
than the smallest distance from Dg (Rf ) \∆ to the diagonal ∆

Structure of Mapper

T

L

DB

UB



Cor: Dg (Mf ) = Dg (Rf ) whenever the resolution r of I is smaller
than the smallest distance from Dg (Rf ) \∆ to the diagonal ∆

dGH(Mf (X, I),Rf (X)) ≤ 3r

Structure of Mapper

Thm: [C., Oudot 2017]

T

L

DB

UB



Statistics for Mapper



Setup

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

δn

Mf (X̂n)
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Prop: [C., Michel, Oudot 2017] M̂n = Mf (X̂n) is measurable



Setup

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

δn

Mf (X̂n)

Prop: [C., Michel, Oudot 2017] M̂n = Mf (X̂n) is measurable

Goal: Find heuristics to compute ”good” δn, gn, rn

Assess quality through confidence regions and convergence rates



Setup
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Confidence regions: given α ∈ (0, 1), find cn(α) ≥ 0 s.t.:

lim sup
n→∞

P
(

dB

(
M̂n,Rf (X)

)
> cn(α)

)
≤ α

→ dB-ball of radius cn(α) around Dg (M̂n)

signal

noise

Setup

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

δn

Mf (X̂n)



Confidence regions: given α ∈ (0, 1), find cn(α) ≥ 0 s.t.:

lim sup
n→∞

P
(

dB

(
M̂n,Rf (X)

)
> cn(α)

)
≤ α

→ dB-ball of radius cn(α) around Dg (M̂n)

Setup

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

δn

Mf (X̂n)

Convergence Rate: estimate E
[
dB(M̂n,Rf (X))

]
w.r.t. n



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

δn

Regularity of the filter function: (exact) modulus of continuity of f

Approximation inequality: [C., Michel, Oudot 2017]

Let X̂n ⊂ X. Under some regularity assumptions on X, f, δ, r, g, one has:

dB

(
Rf (X),Mf (X̂n)

)
≤ r + 2ω(δ)

Rate of Convergence

ω(δ) = sup‖x−x′‖≤δ |f(x)− f(x′)|

Mf (X̂n)



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

δn

4dH(X̂n, X) ≤ δ ≤ C(X)

max{|f(Xi)− f(Xj)| : ‖Xi −Xj‖ ≤ δ} < gr

Approximation inequality: [C., Michel, Oudot 2017]

Let X̂n ⊂ X. Under some regularity assumptions on X, f, δ, r, g, one has:

dB

(
Rf (X),Mf (X̂n)

)
≤ r + 2ω(δ)

Rate of Convergence

Mf (X̂n)



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

δn

Approximation inequality: [C., Michel, Oudot 2017]

Let X̂n ⊂ X. Under some regularity assumptions on X, f, δ, r, g, one has:

dB

(
Rf (X),Mf̂ (X̂n)

)
≤ 2r + 2ω(δ) + max{|f(Xi)− f̂(Xi)|}

4dH(X̂n, X) ≤ δ ≤ C(X)

max{max{|f(Xi)− f(Xj)|, |f̂(Xi)− f̂(Xj)|} : ‖Xi −Xj‖ ≤ δ} ≤ rg

Rate of Convergence

Mf (X̂n)



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

Thm: [C., Michel, Oudot 2017]

If µ is (a, b)-standard, then for δn = 4
(
2 logn
an

)1/b
, gn ∈

(
1
3
, 1

2

)
, rn = Vn

gn
,

one has:

sup
µ∈P

E
[
dB

(
Mf (X̂n),Rf (X)

)]
. ω

(
logn

n

)1/b

f

gn, rn

δn

Vn = max{f(Xi)− f(Xj) : ‖Xi −Xj‖ ≤ δn}

Rate of Convergence

Mf (X̂n)



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

Thm: [C., Michel, Oudot 2017]

If µ is (a, b)-standard, then for δn = 4
(
2 logn
an

)1/b
, gn ∈

(
1
3
, 1

2

)
, rn = Vn

gn
,

one has:

sup
µ∈P

E
[
dB

(
Mf (X̂n),Rf (X)

)]
. ω

(
logn

n

)1/b

f

gn, rn

δn

Vn = max{f(Xi)− f(Xj) : ‖Xi −Xj‖ ≤ δn}

Rate of Convergence

Mf (X̂n)



Take s(n) = o( n
logn

)

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

Subsampling to tune δn: let β > 0 and take s(n) = nlog(n)−(1+β)

δn

δn = dH(X̂
s(n)
n , X̂n) where X̂

s(n)
n ⊂ X̂n of size s(n)

Rate of Convergence

Mf (X̂n)



Take s(n) = o( n
logn

)

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

Subsampling to tune δn: let β > 0 and take s(n) = nlog(n)−(1+β)

δn

Thm: [C., Michel, Oudot 2017]

If µ is (a, b)-standard, then for δn, gn ∈
(
1
3
, 1

2

)
, rn = Vn

gn
, one has

sup
µ∈P

E
[
dB

(
Mf (X̂n),Rf (X)

)]
. ω

(
log(n)2+β

n

)1/b

δn = dH(X̂
s(n)
n , X̂n) where X̂

s(n)
n ⊂ X̂n of size s(n)

Rate of Convergence

Mf (X̂n)



Take s(n) = o( n
logn

)

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

Subsampling to tune δn: let β > 0 and take s(n) = nlog(n)−(1+β)

δn

δn = dH(X̂
s(n)
n , X̂n) where X̂

s(n)
n ⊂ X̂n of size s(n)

Thm: [C., Michel, Oudot 2017]

If µ is (a, b)-standard, then for δn, gn ∈
(
1
3
, 1

2

)
, rn = max{Vn,V̂n}

gn
, one has

sup
µ∈P

E
[
dB

(
M
f̂
(X̂n),Rf (X)

)]
. ω

(
log(n)2+β

n

)1/b

+ E
[
max |f(X)− f̂(X)|

]

Rate of Convergence

Mf (X̂n)



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

δn

Rate of Convergence

Mf (X̂n)

Minimax Optimality: [C., Michel, Oudot 2017] for any estimator R̂n,

ω

(
1

n

)1/b

. sup
µ∈P

E
[
dB

(
R̂n,Rf (X)

)]



X̂n(X, dX , µ) n points sampled
i.i.d. according to µ

f

gn, rn

δn

Ex : PCA filter
Π1: 1st principal direction of covariance operator
Π̂1: 1st principal direction of empirical covariance operator
Using [Biau et. al. 2012]:

E
[
dB

(
RΠ1

(X),MΠ̂1
(X̂n)

)]
.

(
log(n)2+β

n

)1/b

∨ 1√
n

Rate of Convergence

Mf (X̂n)



Or bootstrap (only empirical):

• draw X̂∗n = X∗1 , · · · , X∗n iid from µX̂n (empirical measure on X̂n)

• compute d∗ = dB
(

Mf (X̂∗n),Mf (X̂n)
)

• repeat N times to get d∗1, · · · , d∗N
• let qα be the (1− α) quantile of 1

N

∑N
i=1 I(

√
nd∗i ≥ t)

• take cn(α) = qα√
n

Confidence Regions

Either from proof of previous result with:

E
[
dB

(
Mf (X̂n),Rf (X)

)]
=

∫
α

P
(

dB

(
Mf (X̂n),Rf (X)

)
≥ α

)
dα
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Conclusion

Parameter Selection for Mapper

Extensions:

Multivariate function f : X → Rn

Space of Reeb graphs (curvature, barycenters, interpolation...)

Structure and Stability of Mapper



Conclusion

Parameter Selection for Mapper

Extensions:

Multivariate function f : X → Rn

Space of Reeb graphs (curvature, barycenters, interpolation...)

Structure and Stability of Mapper

Thank you!


