Shatter functions of (geometric) hypergraphs

Boris Bukh \& Xavier Goaoc
arXiv:1701.06632

Vapnik-Chervonenkis dimension via an example.
P a set of n points in \mathbb{R}^{2}
$\circ^{\circ} \circ$
$\mathcal{H}(P)=$ all possible intersections with a (closed) half-plane

$$
\begin{array}{r}
\mathcal{H}(P) \subseteq 2^{P} \text {, the set of all subsets of } P \text { (including } \emptyset \text {). } \\
\text { Ignore repetitions. }
\end{array}
$$

Vapnik-Chervonenkis dimension via an example.
P a set of n points in \mathbb{R}^{2}
$\begin{array}{ll}0 & \\ 0 & 0\end{array}$
$\mathcal{H}(P)=$ all possible intersections
with a (closed) half-plane

$$
\begin{array}{r}
\left.\mathcal{H}(P) \subseteq 2^{P} \text {, the set of all subsets of } P \text { (including } \emptyset\right) . \\
\text { Ignore repetitions. }
\end{array}
$$

Vapnik-Chervonenkis dimension via an example.
P a set of n points in \mathbb{R}^{2}
$\mathcal{H}(P)=$ all possible intersections
with a (closed) half-plane

$$
\begin{array}{r}
\mathcal{H}(P) \subseteq 2^{P}, \text { the set of all subsets of } P(\text { including } \emptyset) . \\
\text { Ignore repetitions. }
\end{array}
$$

Vapnik-Chervonenkis dimension via an example.
P a set of n points in \mathbb{R}^{2}

Vapnik-Chervonenkis dimension via an example.
P a set of n points in \mathbb{R}^{2}

$$
\begin{aligned}
& \mathcal{H}(P)= \text { all possible intersections } \\
& \text { with a (closed) half-plane } \\
& \\
& \mathcal{H}(P) \subseteq 2^{P}, \text { the set of all subsets of } P \text { (including } \emptyset \text {). } \\
& \text { Ignore repetitions. }
\end{aligned}
$$

Local

How large can P be if $\mathcal{H}(P)=2^{P}$?

Global

How large is $\max _{|P|=n}|\mathcal{H}(P)|$?

Vapnik-Chervonenkis dimension via an example.
P a set of n points in \mathbb{R}^{2}

$$
\begin{aligned}
\mathcal{H}(P)= & \text { all possible intersections } \\
& \text { with a (closed) half-plane } \\
& \\
& \left.\mathcal{H}(P) \subseteq 2^{P}, \text { the set of all subsets of } P \text { (including } \emptyset\right) . \\
& \text { Ignore repetitions. }
\end{aligned}
$$

Local

How large can P be if $\mathcal{H}(P)=2^{P}$?

Global

How large is $\max _{|P|=n}|\mathcal{H}(P)|$?

Vapnik-Chervonenkis dimension via an example.
P a set of n points in \mathbb{R}^{2}

$$
\begin{aligned}
& \mathcal{H}(P)=\text { all possible intersections } \\
& \text { with a (closed) half-plane } \\
& \text { Ignore repetitions. } \\
& \mathcal{H}(P) \subseteq 2^{P} \text {, the set of all subsets of } P \text { (including } \emptyset \text {). } \\
& \text { Ignore repetitions. }
\end{aligned}
$$

Local

How large can P be if $\mathcal{H}(P)=2^{P}$?

Global

How large is $\max _{|P|=n}|\mathcal{H}(P)|$?

Vapnik-Chervonenkis dimension via an example.
P a set of n points in \mathbb{R}^{2}

$$
\begin{aligned}
& \mathcal{H}(P)= \text { all possible intersections } \\
& \text { with a (closed) half-plane } \\
& \\
& \mathcal{H}(P) \subseteq 2^{P}, \text { the set of all subsets of } P \text { (including } \emptyset \text {). } \\
& \text { Ignore repetitions. }
\end{aligned}
$$

Local

How large can P be if $\mathcal{H}(P)=2^{P}$?

Global
How large is $\max _{|P|=n}|\mathcal{H}(P)|$?

The two questions are related at a combinatorial level.

Vapnik-Chervonenkis dimension, formally.

$$
[n]=\{1,2, \ldots, n\}
$$

\mathcal{H} a set of subsets of $[n]$
so $\mathcal{H} \subseteq 2^{[n]}$.

Vapnik-Chervonenkis dimension, formally.

$$
\mathbf{o}^{\mathbf{o}^{3}} \mathbf{o r}^{9} \quad \mathbf{o}_{2}
$$

\mathcal{H} a set of subsets of $[n] \quad$ so $\mathcal{H} \subseteq 2^{[n]}$.

Vapnik-Chervonenkis dimension, formally.

$$
[n]=\{1,2, \ldots, n\}
$$

Trace of \mathcal{H} on $S \subseteq[n]$ is $\mathcal{H}_{\mid S}=\{e \cap S: e \in \mathcal{H}\}$

$$
\text { If } \mathcal{H}=\{\{1,2,3\},\{1,3\},\{2\},\{2,3\}\} \text {, then } \mathcal{H}_{\mid\{1,3\}}=\{\{1,3\}, \emptyset,\{3\}\} \text {. }
$$

Vapnik-Chervonenkis dimension, formally.

$$
[n]=\{1,2, \ldots, n\}
$$

$$
\mathbf{o}^{\mathbf{o}^{3}} \mathbf{o}^{9} \quad \mathbf{O}_{2}
$$

$$
0
$$

\mathcal{H} a set of subsets of $[n] \quad$ so $\mathcal{H} \subseteq 2^{[n]}$.

Trace of \mathcal{H} on $S \subseteq[n]$ is $\mathcal{H}_{\mid S}=\{e \cap S: e \in \mathcal{H}\}$

$$
\text { If } \mathcal{H}=\{\{1,2,3\},\{1,3\},\{2\},\{2,3\}\} \text {, then } \mathcal{H}_{\mid\{1,3\}}=\{\{1,3\}, \emptyset,\{3\}\} \text {. }
$$

Shatter function $f_{\mathcal{H}}(k)=$ size of the largest trace of \mathcal{H} on k elements.

$$
f_{\mathcal{H}}:\left\{\begin{array}{rll}
\mathbb{N} & \rightarrow \mathbb{N} \\
k & \mapsto & \max _{\operatorname{se[m]}}\left|\mathcal{H}_{|S|}\right| \leq k
\end{array}\right.
$$

Vapnik-Chervonenkis dimension, formally.

$$
\mathbf{O}_{2}
$$

$$
[n]=\{1,2, \ldots, n\}
$$

$$
0
$$

\mathcal{H} a set of subsets of $[n] \quad$ so $\mathcal{H} \subseteq 2^{[n]}$.

Trace of \mathcal{H} on $S \subseteq[n]$ is $\mathcal{H}_{\mid S}=\{e \cap S: e \in \mathcal{H}\}$

$$
\text { If } \mathcal{H}=\{\{1,2,3\},\{1,3\},\{2\},\{2,3\}\} \text {, then } \mathcal{H}_{\mid\{1,3\}}=\{\{1,3\}, \emptyset,\{3\}\} \text {. }
$$

Shatter function $f_{\mathcal{H}}(k)=$ size of the largest trace of \mathcal{H} on k elements.

$$
f_{\mathcal{H}}:\left\{\begin{aligned}
\mathbb{N} & \rightarrow \mathbb{N} \\
k & \mapsto \max _{\substack{\operatorname{S\subseteq |[n]}]}} \mid \mathcal{H}_{|S|}
\end{aligned}\right.
$$

Sauer's lemma. $f_{\mathcal{H}}(k+1)<2^{k+1} \Rightarrow f_{\mathcal{H}}(n) \leq \sum_{i=0}^{k}\binom{n}{i}=O\left(n^{k}\right)$.
[Vapnik-Chervonenkis'71][Sauer'72][Shelah'72].

Vapnik-Chervonenkis dimension, formally.

$$
[n]=\{1,2, \ldots, n\}
$$

0

Trace of \mathcal{H} on $S \subseteq[n]$ is $\mathcal{H}_{\mid S}=\{e \cap S: e \in \mathcal{H}\}$

$$
\text { If } \mathcal{H}=\{\{1,2,3\},\{1,3\},\{2\},\{2,3\}\} \text {, then } \mathcal{H}_{\mid\{1,3\}}=\{\{1,3\}, \emptyset,\{3\}\} \text {. }
$$

Shatter function $f_{\mathcal{H}}(k)=$ size of the largest trace of \mathcal{H} on k elements.

$$
f_{\mathcal{H}}:\left\{\begin{aligned}
\mathbb{N} & \rightarrow \mathbb{N} \\
k & \mapsto \max _{\substack{\operatorname{SCn}[n] \\
|S| \leq k}} \mid \mathcal{H}_{|S|}
\end{aligned}\right.
$$

Sauer's lemma. $f_{\mathcal{H}}(k+1)<2^{k+1} \Rightarrow f_{\mathcal{H}}(n) \leq \sum_{i=0}^{k}\binom{n}{i}=O\left(n^{k}\right)$.
[Vapnik-Chervonenkis'71][Sauer'72][Shelah'72].

Examples of applications to Hitting-SET problem:
Given: sets $A_{1}, A_{2}, \ldots, A_{n} \subset X(\simeq$ a hypergraph $)$

```
Find: a smallest }Y\subseteqX\mathrm{ s.t. }\mp@subsup{A}{i}{}\capY\not=\emptyset\mathrm{ for }i=1,2,\ldots,
```

Better bound on the approximation ratio of the greedy algorithm.
$O(\log \mid$ opt $\mid)$ in place of $O(\log n)$ where $n=$ number of sets.
ϵ-net theorem.

$$
O\left(\frac{d}{\epsilon} \log \frac{1}{\epsilon}\right) \text { points suffice to hit all sets of size } \geq \epsilon n \text {. }
$$

ϵ-approximation theorem.

$$
O\left(\frac{d}{\epsilon^{2}} \log \frac{1}{\epsilon}\right) \text { points suffice to approximate all sets of size } \geq \epsilon n \text {. }
$$

fractional Helly theorem

> If $\geq \alpha\binom{n}{d+1}$ of the $(d+1)$-element subsets intersect,
> then a proportion $\geq \beta(\alpha, d)$ of the sets intersect.
(p, q)-theorem
If among any p sets some q intersect, then some $c(p, q, d)$ points suffice to hit all sets.

Usually stated with $d \leq$ (dual) VC-dimension but really uses $f_{\mathcal{H}}(n)=O\left(n^{d}\right)$.

Bounding one value of $f_{\mathcal{H}}$ restricts its asymptotic growth.

$$
\begin{aligned}
f_{\mathcal{H}}(k)<2^{k} & \Rightarrow f_{\mathcal{H}}(n)=O\left(n^{k-1}\right) \\
f_{\mathcal{H}}(2) \leq 3 & \Rightarrow f_{\mathcal{H}}(n)=O(n)
\end{aligned}
$$

Bounding one value of $f_{\mathcal{H}}$ restricts its asymptotic growth.

$$
\left.\begin{aligned}
f_{\mathcal{H}}(k)<2^{k} & \Rightarrow f_{\mathcal{H}}(n)=O\left(n^{k-1}\right) \\
f_{\mathcal{H}}(2) \leq 3 & \Rightarrow f_{\mathcal{H}}(n)=O(n)
\end{aligned} \right\rvert\, f_{\mathcal{H}}(2) \leq 2 \Rightarrow f_{\mathcal{H}}(n) \leq 2
$$

Bounding one value of $f_{\mathcal{H}}$ restricts its asymptotic growth.

$$
\left.\begin{array}{rl|l}
f_{\mathcal{H}}(k)<2^{k} & \Rightarrow f_{\mathcal{H}}(n)=O\left(n^{k-1}\right) & \begin{array}{l}
f_{\mathcal{H}}(k) \leq k \Rightarrow f_{\mathcal{H}}(n) \leq k \\
f_{\mathcal{H}}(2) \leq 3
\end{array} \Rightarrow f_{\mathcal{H}}(n)=O(n)
\end{array} \right\rvert\, \begin{aligned}
& f_{\mathcal{H}}(2) \leq 2 \Rightarrow f_{\mathcal{H}}(n) \leq 2
\end{aligned}
$$

Bounding one value of $f_{\mathcal{H}}$ restricts its asymptotic growth.

$$
\left.\begin{array}{rl|l}
f_{\mathcal{H}}(k)<2^{k} & \Rightarrow f_{\mathcal{H}}(n)=O\left(n^{k-1}\right) & \begin{array}{l}
f_{\mathcal{H}}(k) \leq k \Rightarrow f_{\mathcal{H}}(n) \leq k \\
f_{\mathcal{H}}(2) \leq 3
\end{array} \Rightarrow f_{\mathcal{H}}(n)=O(n)
\end{array} \right\rvert\, \begin{aligned}
& f_{\mathcal{H}}(2) \leq 2 \Rightarrow f_{\mathcal{H}}(n) \leq 2
\end{aligned}
$$

Define $t_{k}(m)$ as the largest integer such that for any hypergraph \mathcal{H},

$$
f_{\mathcal{H}}(m) \leq t_{k}(m) \quad \Rightarrow \quad f_{h}(n)=O\left(n^{k}\right) .
$$

How does $t_{k}(m)$ grow with k and m ?

Bounding one value of $f_{\mathcal{H}}$ restricts its asymptotic growth.

$$
\left.\begin{array}{rl|l}
f_{\mathcal{H}}(k)<2^{k} & \Rightarrow f_{\mathcal{H}}(n)=O\left(n^{k-1}\right) & \begin{array}{l}
f_{\mathcal{H}}(k) \leq k \Rightarrow f_{\mathcal{H}}(n) \leq k \\
f_{\mathcal{H}}(2) \leq 3
\end{array} \Rightarrow f_{\mathcal{H}}(n)=O(n)
\end{array} \right\rvert\, \begin{aligned}
& f_{\mathcal{H}}(2) \leq 2 \Rightarrow f_{\mathcal{H}}(n) \leq 2
\end{aligned}
$$

Define $t_{k}(m)$ as the largest integer such that for any hypergraph \mathcal{H},

$$
f_{\mathcal{H}}(m) \leq t_{k}(m) \quad \Rightarrow \quad f_{h}(n)=O\left(n^{k}\right) .
$$

How does $t_{k}(m)$ grow with k and m ?
$t_{k}(m)=\Omega\left(m^{k}\right)$ as $m \rightarrow \infty$ conjectured:
Bondy-Hajnal conjecture. For any $m, k \exists n_{0}(m, k)$ such that

$$
f_{\mathcal{H}}(m) \leq \sum_{i=0}^{k}\binom{m}{i} \quad \Rightarrow \quad f_{\mathcal{H}}(n) \leq \sum_{i=0}^{k}\binom{n}{i} \quad \text { for } n \geq n_{0}(m, k) .
$$

Bounding one value of $f_{\mathcal{H}}$ restricts its asymptotic growth.

$$
\begin{aligned}
& f_{\mathcal{H}}(k)<2^{k} \Rightarrow f_{\mathcal{H}}(n)=O\left(n^{k-1}\right) \quad \mid f_{\mathcal{H}}(k) \leq k \Rightarrow f_{\mathcal{H}}(n) \leq k \\
& f_{\mathcal{H}}(2) \leq 3 \quad \Rightarrow \quad f_{\mathcal{H}}(n)=O(n) \quad f_{\mathcal{H}}(2) \leq 2 \Rightarrow f_{\mathcal{H}}(n) \leq 2
\end{aligned}
$$

Define $t_{k}(m)$ as the largest integer such that for any hypergraph \mathcal{H},

$$
f_{\mathcal{H}}(m) \leq t_{k}(m) \quad \Rightarrow \quad f_{h}(n)=O\left(n^{k}\right)
$$

How does $t_{k}(m)$ grow with k and m ?
$t_{k}(m)=\Omega\left(m^{k}\right)$ as $m \rightarrow \infty$ conjectured:
Bondy-Hajnal conjecture. For any $m, k \exists n_{0}(m, k)$ such that

$$
f_{\mathcal{H}}(m) \leq \sum_{i=0}^{k}\binom{m}{i} \quad \Rightarrow \quad f_{\mathcal{H}}(n) \leq \sum_{i=0}^{k}\binom{n}{i} \quad \text { for } n \geq n_{0}(m, k)
$$

For halfplanes in $\mathbb{R}^{2}, f_{\mathcal{H}}(3)=8$ and $f_{\mathcal{H}}(4) \leq 14$.
\Rightarrow Sauer's lemma gives only $O\left(n^{3}\right)$
Does any shatter condition give $O\left(n^{2}\right)$ for points and halfplanes in \mathbb{R}^{2} ?

$$
\begin{array}{r}
t_{k}(m)=\text { largest integer s.t. } \forall \mathcal{H}, f_{\mathcal{H}}(m) \leq t_{k}(m) \Rightarrow f_{h}(n)=O\left(n^{k}\right) . \\
\text { Bondy-Hajnal: } f_{\mathcal{H}}(m) \leq \sum_{i=0}^{k}\binom{m}{i} \Rightarrow f_{\mathcal{H}}(n) \leq \sum_{i=0}^{k}\binom{n}{i}
\end{array}
$$

Known facts...

Compression lemma. For every hypergraph \mathcal{H} there exists a simplicial complex \mathcal{K} such that $|\mathcal{K}|=|\mathcal{H}|$ and $f_{\mathcal{K}} \leq f_{\mathcal{H}}$.

> simplicial complex $=$ hereditary hypergraph $$
\sigma \in \mathcal{K} \text { and } \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
$$

Known facts...

$$
t_{k}(m)=\text { largest integer s.t. } \forall \mathcal{H}, f_{\mathcal{H}}(m) \leq t_{k}(m) \Rightarrow f_{h}(n)=O\left(n^{k}\right) .
$$

Compression lemma. For every hypergraph \mathcal{H} there exists a simplicial complex \mathcal{K} such that $|\mathcal{K}|=|\mathcal{H}|$ and $f_{\mathcal{K}} \leq f_{\mathcal{H}}$.

$$
\begin{aligned}
& \text { simplicial complex }=\text { hereditary hypergraph } \\
& \qquad \sigma \in \mathcal{K} \text { and } \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
\end{aligned}
$$

To prove shatter-type conditions it suffices to consider simplicial complexes.

$$
\begin{aligned}
f_{\mathcal{H}}(4) \leq 8 & \Rightarrow f_{\mathcal{H}}(n)=O(n \sqrt{n}) \\
f_{\mathcal{H}}(6) \leq 15 & \Rightarrow f_{\mathcal{H}}(n)=O\left(n^{5 / 3}\right) \\
f_{\mathcal{H}}(m) \leq 2 m-1 & \Rightarrow f_{\mathcal{H}}(n)=O(n)
\end{aligned}
$$

Known facts...

$$
t_{k}(m)=\text { largest integer s.t. } \forall \mathcal{H}, f_{\mathcal{H}}(m) \leq t_{k}(m) \Rightarrow f_{h}(n)=O\left(n^{k}\right) .
$$

Compression lemma. For every hypergraph \mathcal{H} there exists a simplicial complex \mathcal{K} such that $|\mathcal{K}|=|\mathcal{H}|$ and $f_{\mathcal{K}} \leq f_{\mathcal{H}}$.

$$
\begin{aligned}
& \text { simplicial complex }=\text { hereditary hypergraph } \\
& \qquad \sigma \in \mathcal{K} \text { and } \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
\end{aligned}
$$

To prove shatter-type conditions it suffices to consider simplicial complexes.

$$
\begin{aligned}
f_{\mathcal{H}}(4) \leq 8 & \Rightarrow f_{\mathcal{H}}(n)=O(n \sqrt{n}) \\
f_{\mathcal{H}}(6) \leq 15 & \Rightarrow f_{\mathcal{H}}(n)=O\left(n^{5 / 3}\right) \\
f_{\mathcal{H}}(m) \leq 2 m-1 & \Rightarrow f_{\mathcal{H}}(n)=O(n)
\end{aligned}
$$

Bondy-Hajnal conjecture \simeq comparison to complete complexes.

Known facts...

$$
t_{k}(m)=\text { largest integer s.t. } \forall \mathcal{H}, f_{\mathcal{H}}(m) \leq t_{k}(m) \Rightarrow f_{h}(n)=O\left(n^{k}\right)
$$

Compression lemma. For every hypergraph \mathcal{H} there exists a simplicial complex \mathcal{K} such that $|\mathcal{K}|=|\mathcal{H}|$ and $f_{\mathcal{K}} \leq f_{\mathcal{H}}$.

$$
\begin{aligned}
& \text { simplicial complex }=\text { hereditary hypergraph } \\
& \qquad \sigma \in \mathcal{K} \text { and } \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
\end{aligned}
$$

To prove shatter-type conditions it suffices to consider simplicial complexes.

$$
\begin{aligned}
f_{\mathcal{H}}(4) \leq 8 & \Rightarrow f_{\mathcal{H}}(n)=O(n \sqrt{n}) \\
f_{\mathcal{H}}(6) \leq 15 & \Rightarrow f_{\mathcal{H}}(n)=O\left(n^{5 / 3}\right) \\
f_{\mathcal{H}}(m) \leq 2 m-1 & \Rightarrow f_{\mathcal{H}}(n)=O(n)
\end{aligned}
$$

Bondy-Hajnal conjecture \simeq comparison to complete complexes.

Bondy-Hajnal is true for $(k, m)=(2,4) \quad$ [Bollobàs-Radcliffe'95]

$$
t_{k}(m)=\text { largest integer s.t. } \forall \mathcal{H}, f_{\mathcal{H}}(m) \leq t_{k}(m) \Rightarrow f_{h}(n)=O\left(n^{k}\right)
$$

Known facts...

$$
\text { Bondy-Hajnal: } f_{\mathcal{H}}(m) \leq \sum_{i=0}^{k}\binom{m}{i} \Rightarrow f_{\mathcal{H}}(n) \leq \sum_{i=0}^{k}\binom{n}{i}
$$

Compression lemma. For every hypergraph \mathcal{H} there exists a simplicial complex \mathcal{K} such that $|\mathcal{K}|=|\mathcal{H}|$ and $f_{\mathcal{K}} \leq f_{\mathcal{H}}$.

$$
\begin{aligned}
& \text { simplicial complex }=\text { hereditary hypergraph } \\
& \qquad \sigma \in \mathcal{K} \text { and } \tau \subset \sigma \Rightarrow \tau \in \mathcal{K}
\end{aligned}
$$

To prove shatter-type conditions it suffices to consider simplicial complexes.

$$
\begin{aligned}
f_{\mathcal{H}}(4) \leq 8 & \Rightarrow f_{\mathcal{H}}(n)=O(n \sqrt{n}) \\
f_{\mathcal{H}}(6) \leq 15 & \Rightarrow f_{\mathcal{H}}(n)=O\left(n^{5 / 3}\right) \\
f_{\mathcal{H}}(m) \leq 2 m-1 & \Rightarrow f_{\mathcal{H}}(n)=O(n)
\end{aligned}
$$

Bondy-Hajnal conjecture \simeq comparison to complete complexes.

Bondy-Hajnal is true for $(k, m)=(2,4) \quad$ [Bollobàs-Radcliffe'95]
$t_{k}(m) \geq 2^{k} m-(k-1) 2^{k}-1 \quad$ [Cheong-Goaoc-Nicaud'13]

$$
t_{k}(m)=\text { largest integer s.t. } \forall \mathcal{H}, f_{\mathcal{H}}(m) \leq t_{k}(m) \Rightarrow f_{h}(n)=O\left(n^{k}\right) .
$$

New results:

Improved shatter condition:

$$
t_{k}(m)>\left(2^{k+1}-k-1\right) m-2^{4 k}
$$

Previous bound: $t_{k}(m) \geq 2^{k} m-(k-1) 2^{k}-1$

Near matching upper bound: $\quad t_{k}(m)<\left(2^{k+1}-k-1\right) m$

$$
t_{k}(m)=\text { largest integer s.t. } \forall \mathcal{H}, f_{\mathcal{H}}(m) \leq t_{k}(m) \Rightarrow f_{h}(n)=O\left(n^{k}\right) .
$$

New results:

Improved shatter condition:

$$
t_{k}(m)>\left(2^{k+1}-k-1\right) m-2^{4 k}
$$

Previous bound: $t_{k}(m) \geq 2^{k} m-(k-1) 2^{k}-1$

Near matching upper bound: $\quad t_{k}(m)<\left(2^{k+1}-k-1\right) m$

$$
t_{k}(m)=\Theta(m) \text { as } m \rightarrow \infty
$$

New results:

Improved shatter condition:

$$
t_{k}(m)>\left(2^{k+1}-k-1\right) m-2^{4 k}
$$

$$
\text { Previous bound: } t_{k}(m) \geq 2^{k} m-(k-1) 2^{k}-1
$$

Near matching upper bound: $\quad t_{k}(m)<\left(2^{k+1}-k-1\right) m$

How does $t_{k}(m)$ grow with k and m ?

Bondy-Hajnal conjecture. For any $m, k \exists n_{0}(m, k)$ such that

$$
f_{\mathcal{H}}(m) \leq \sum_{i=0}^{k}\binom{m}{i} \quad \Rightarrow \quad f_{\mathcal{H}}(n) \leq \sum_{i=0}^{k}\binom{n}{i} \quad \text { for } n \geq n_{0}(m, k) .
$$

New results:

Improved shatter condition:

$$
t_{k}(m)>\left(2^{k+1}-k-1\right) m-2^{4 k}
$$

$$
\text { Previous bound: } t_{k}(m) \geq 2^{k} m-(k-1) 2^{k}-1
$$

Near matching upper bound: $\quad t_{k}(m)<\left(2^{k+1}-k-1\right) m$

How does $t_{k}(m)$ grow with k and m ?
$t_{k}(m)=\Theta(m)$ as $m \rightarrow \infty$.

Bondy-Hajnal conjecture. For any $m, k \exists n_{0}(m, k)$ such that

$$
f_{\mathcal{H}}(m) \leq \sum_{i=0}^{k}\binom{m}{i} \quad \Rightarrow \quad f_{\mathcal{H}}(n) \leq \sum_{i=0}^{k}\binom{n}{i} \quad \text { for } n \geq n_{0}(m, k)
$$

Some proofs...

Let's prove that $f_{\mathcal{H}}(4) \leq 1+4+\binom{4}{2}=11 \quad \Rightarrow \quad|\mathcal{H}| \leq 1+n+\binom{n}{2}$.
B-H for $(k, m)=(2,4)$
\mathcal{H} consists of \emptyset, n vertices, some edges, some triangles.
Compression lemma allows to consider \mathcal{H} as a simplicial complex.
If $Q \in \mathcal{H}$ with $|Q|=4$ then $f_{\mathcal{H}}(4) \geq\left|\mathcal{H}_{\mid Q}\right|=16$.

Let's prove that $f_{\mathcal{H}}(4) \leq 1+4+\binom{4}{2}=11 \quad \Rightarrow \quad|\mathcal{H}| \leq 1+n+\binom{n}{2}$.
B-H for $(k, m)=(2,4)$
\mathcal{H} consists of \emptyset, n vertices, some edges, some triangles.

$$
\begin{aligned}
& \text { Compression lemma allows to consider } \mathcal{H} \text { as a simplicial complex. } \\
& \qquad \text { If } Q \in \mathcal{H} \text { with }|Q|=4 \text { then } f_{\mathcal{H}}(4) \geq\left|\mathcal{H}_{\mid Q}\right|=16 .
\end{aligned}
$$

Reformulation:
Add triangles and delete edges so that: $\left\{\begin{array}{l}\text { for every triangle, the } 3 \text { edges remain, } \\ \text { on any } 4 \text { vertices, } \# \text { added triangles } \leq \# \text { deleted edges. }\end{array}\right.$

Let's prove that $f_{\mathcal{H}}(4) \leq 1+4+\binom{4}{2}=11 \quad \Rightarrow \quad|\mathcal{H}| \leq 1+n+\binom{n}{2}$.
B-H for $(k, m)=(2,4)$
\mathcal{H} consists of \emptyset, n vertices, some edges, some triangles.

$$
\begin{aligned}
& \text { Compression lemma allows to consider } \mathcal{H} \text { as a simplicial complex. } \\
& \qquad \text { If } Q \in \mathcal{H} \text { with }|Q|=4 \text { then } f_{\mathcal{H}}(4) \geq\left|\mathcal{H}_{\mid Q}\right|=16 .
\end{aligned}
$$

Reformulation:
Add triangles and delete edges so that: $\left\{\begin{array}{l}\text { for every triangle, the } 3 \text { edges remain, } \\ \text { on any } 4 \text { vertices, } \# \text { added triangles } \leq \# \text { deleted edges. }\end{array}\right.$

Forbidden configurations:

Let's prove that $f_{\mathcal{H}}(4) \leq 1+4+\binom{4}{2}=11 \quad \Rightarrow \quad|\mathcal{H}| \leq 1+n+\binom{n}{2}$.
B-H for $(k, m)=(2,4)$
\mathcal{H} consists of \emptyset, n vertices, some edges, some triangles.

$$
\begin{aligned}
& \text { Compression lemma allows to consider } \mathcal{H} \text { as a simplicial complex. } \\
& \qquad \text { If } Q \in \mathcal{H} \text { with }|Q|=4 \text { then } f_{\mathcal{H}}(4) \geq\left|\mathcal{H}_{\mid Q}\right|=16 .
\end{aligned}
$$

Reformulation:
Add triangles and delete edges so that: $\left\{\begin{array}{l}\text { for every triangle, the } 3 \text { edges remain, } \\ \text { on any } 4 \text { vertices, } \# \text { added triangles } \leq \# \text { deleted edges. }\end{array}\right.$

Forbidden configurations:

Let's prove that $f_{\mathcal{H}}(4) \leq 1+4+\binom{4}{2}=11 \quad \Rightarrow \quad|\mathcal{H}| \leq 1+n+\binom{n}{2}$.
B-H for $(k, m)=(2,4)$
\mathcal{H} consists of \emptyset, n vertices, some edges, some triangles.

$$
\begin{aligned}
& \text { Compression lemma allows to consider } \mathcal{H} \text { as a simplicial complex. } \\
& \qquad \text { If } Q \in \mathcal{H} \text { with }|Q|=4 \text { then } f_{\mathcal{H}}(4) \geq\left|\mathcal{H}_{\mid Q}\right|=16 .
\end{aligned}
$$

Reformulation:
Add triangles and delete edges so that: $\left\{\begin{array}{l}\text { for every triangle, the } 3 \text { edges remain, } \\ \text { on any } 4 \text { vertices, } \# \text { added triangles } \leq \# \text { deleted edges. }\end{array}\right.$

Forbidden configurations:

Let's prove that $f_{\mathcal{H}}(4) \leq 1+4+\binom{4}{2}=11 \quad \Rightarrow \quad|\mathcal{H}| \leq 1+n+\binom{n}{2}$.
B-H for $(k, m)=(2,4)$
\mathcal{H} consists of \emptyset, n vertices, some edges, some triangles.

$$
\begin{aligned}
& \text { Compression lemma allows to consider } \mathcal{H} \text { as a simplicial complex. } \\
& \qquad \text { If } Q \in \mathcal{H} \text { with }|Q|=4 \text { then } f_{\mathcal{H}}(4) \geq\left|\mathcal{H}_{\mid Q}\right|=16 .
\end{aligned}
$$

Reformulation:
Add triangles and delete edges so that: $\left\{\begin{array}{l}\text { for every triangle, the } 3 \text { edges remain, } \\ \text { on any } 4 \text { vertices, } \# \text { added triangles } \leq \# \text { deleted edges. }\end{array}\right.$

Forbidden configurations:

Contradictory incentives:

```
more triangles }=>\mathrm{ fewer edges,
    in each triangle, the degree sum to at most 2+2(n-3)
fewer edges }=>\mathrm{ fewer triangles
at each vertex, # triangles }\leq\frac{#\mathrm{ edges}}{2
```

Proof of the upper bound...
$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$
... by the "probabilistic method".

Proof of the upper bound...
$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$
... by the "probabilistic method".

Ex.: Any graph can be made bipartite by throwing away at most half of its edges.

> Partition the vertices into 2 classes by flipping unbiased coins,
> on average, half of the edges are monoclass, there exists a partition no worse than the average.

Proof of the upper bound...
$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$
... by the "probabilistic method".

Ex.: Any graph can be made bipartite by throwing away at most half of its edges.

> Partition the vertices into 2 classes by flipping unbiased coins,
> on average, half of the edges are monoclass, there exists a partition no worse than the average.

Ex.: The Ramsey number $R(k, k)$ is at least $2^{k / 2}$.
Uniform random 2-coloration of the edges of K_{n}.
Probability that k vertices span a monochromatic subgraph $\leq \frac{2}{2\binom{k}{2}}$.
Probability that coloring has a monochromatic k-set $\leq\binom{ n}{k} 2^{-\binom{k}{2}+1}$
Look for the largest k such that $\binom{n}{k} 2^{-\binom{k}{2}+1}<1$

Proof of the upper bound.

$$
\begin{aligned}
& t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1 \\
& \Leftrightarrow \exists \text { hypergraphs on } n \text { vertices with } f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1 \text { and size } \omega\left(n^{k}\right)
\end{aligned}
$$

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Proof of the upper bound.
$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.
Add Consider every triple where all 3 edges was added; add it with probability p.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.
Add Consider every triple where all 3 edges was added; add it with probability p.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.
Add Consider every triple where all 3 edges was added; add it with probability p.

Consider every $(k+1)$-subset where every k-subset was added; add it with probability p.

Proof of the upper bound.

$t_{k}(m) \leq\left(2^{k+1}-k-1\right) m+1$
$\Leftrightarrow \exists$ hypergraphs on n vertices with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m+1$ and size $\omega\left(n^{k}\right)$

Two-stage probabilistic construction.

Random simplicial complex \mathcal{C} governed by a parameter $p=n^{-\alpha}$.
Tune α so that \mathcal{C} is large and $f_{\mathcal{C}}(m)$ is small.
Incompatible conditions...
... but when \mathcal{C} starts to be large, few m-tuples have large trace.
Deleting these m-tuples ensure $f_{\mathcal{C}}(m)$ small and does not affect the size much.

Model of random simplicial complex.
Start with the empty set and every vertex.
Consider every edge in turn, and add it with probability p. Events are independant.
Add Consider every triple where all 3 edges was added; add it with probability p.

Consider every $(k+1)$-subset where every k-subset was added; add it with probability p.

Delete every m-tuple of vertices supporting too many simplices.

Model

n vertices, parameter $p=n^{-\alpha}$
build \mathcal{C} by:
declaring \emptyset and all vertices in \mathcal{C},
examining subsets of size up to $k+1$ in order increasing w.r.t. inclusion,
when examining U, if all proper subsets are in \mathcal{C}, add U to \mathcal{C} with probability p.
parameter z
build \mathcal{C}^{\prime} by:
a m-tuple V is bad if $\left|\mathcal{C}_{\mid V}\right|>1+m+z$
Delete every bad m-tuple and all simplices using them

Model

n vertices, parameter $p=n^{-\alpha}$
build \mathcal{C} by:
declaring \emptyset and all vertices in \mathcal{C}, examining subsets of size up to $k+1$ in order increasing w.r.t. inclusion, when examining U, if all proper subsets are in \mathcal{C}, add U to \mathcal{C} with probability p.
parameter z
build \mathcal{C}^{\prime} by:
a m-tuple V is bad if $\left|\mathcal{C}_{\mid V}\right|>1+m+z$
Delete every bad m-tuple and all simplices using them

Analysis

N : number of $(k+1)$-tuples of \mathcal{C}.
$|\mathcal{C}|=\omega\left(n^{k}\right) \Leftrightarrow N=\omega\left(n^{k}\right)$
$f_{\mathcal{C}^{\prime}}(m) \leq 1+m+z$
B : number of bad m-tuples.
N^{\prime} : number of $(k+1)$-tuples of \mathcal{C}^{\prime}.
$N^{\prime} \geq N-B m\binom{n}{k}$

Model

n vertices, parameter $p=n^{-\alpha}$
build \mathcal{C} by:
declaring \emptyset and all vertices in \mathcal{C},
examining subsets of size up to $k+1$ in order increasing w.r.t. inclusion,
when examining U, if all proper subsets are in \mathcal{C}, add U to \mathcal{C} with probability p.
parameter z
build \mathcal{C}^{\prime} by:
a m-tuple V is bad if $\left|\mathcal{C}_{\mid V}\right|>1+m+z$
Delete every bad m-tuple and all simplices using them

Analysis

N : number of $(k+1)$-tuples of \mathcal{C}.

$$
\begin{aligned}
& |\mathcal{C}|=\omega\left(n^{k}\right) \Leftrightarrow N=\omega\left(n^{k}\right) \\
& \mathbb{P}[U \in \mathcal{C}]=p^{2^{|U|}-|U|-1}
\end{aligned}
$$

$$
f_{\mathcal{C}^{\prime}}(m) \leq 1+m+z
$$

B : number of bad m-tuples.
N^{\prime} : number of $(k+1)$-tuples of \mathcal{C}^{\prime}.
$N^{\prime} \geq N-B m\binom{n}{k}$

Model

n vertices, parameter $p=n^{-\alpha}$
build \mathcal{C} by:
declaring \emptyset and all vertices in \mathcal{C}, examining subsets of size up to $k+1$ in order increasing w.r.t. inclusion,
when examining U, if all proper subsets are in \mathcal{C}, add U to \mathcal{C} with probability p.
parameter z
build \mathcal{C}^{\prime} by:
a m-tuple V is bad if $\left|\mathcal{C}_{\mid V}\right|>1+m+z$
Delete every bad m-tuple and all simplices using them

Analysis

N : number of $(k+1)$-tuples of \mathcal{C}.
$|\mathcal{C}|=\omega\left(n^{k}\right) \Leftrightarrow N=\omega\left(n^{k}\right)$
$\mathbb{P}[U \in \mathcal{C}]=p^{2^{|U|}-|U|-1}$
$\mathbb{E}[N]=\binom{n}{k+1} p^{2^{k+1}-k-2} \simeq n^{k+1-\alpha\left(2^{k+1}-k-2\right)}$
$f_{\mathcal{C}^{\prime}}(m) \leq 1+m+z$
B : number of bad m-tuples.
N^{\prime} : number of $(k+1)$-tuples of \mathcal{C}^{\prime}.
$N^{\prime} \geq N-B m\binom{n}{k}$

Model

n vertices, parameter $p=n^{-\alpha}$
build \mathcal{C} by:
declaring \emptyset and all vertices in \mathcal{C}, examining subsets of size up to $k+1$ in order increasing w.r.t. inclusion,
when examining U, if all proper subsets are in \mathcal{C}, add U to \mathcal{C} with probability p.
parameter z
build \mathcal{C}^{\prime} by:
a m-tuple V is bad if $\left|\mathcal{C}_{\mid V}\right|>1+m+z$
Delete every bad m-tuple and all simplices using them

Analysis

N : number of $(k+1)$-tuples of \mathcal{C}.
$|\mathcal{C}|=\omega\left(n^{k}\right) \Leftrightarrow N=\omega\left(n^{k}\right)$
$\mathbb{P}[U \in \mathcal{C}]=p^{2^{|U|}-|U|-1}$
$\mathbb{E}[N]=\binom{n}{k+1} p^{2^{k+1}-k-2} \simeq n^{k+1-\alpha\left(2^{k+1}-k-2\right)}$
$\alpha\left(2^{k+1}-k-2\right)<1$ ensures $\mathbb{E}[|\mathcal{C}|]=\omega\left(n^{k}\right)$
$f_{\mathcal{C}^{\prime}}(m) \leq 1+m+z$
B : number of bad m-tuples.
N^{\prime} : number of $(k+1)$-tuples of \mathcal{C}^{\prime}.
$N^{\prime} \geq N-B m\binom{n}{k}$

Model

n vertices, parameter $p=n^{-\alpha}$
build \mathcal{C} by:
declaring \emptyset and all vertices in \mathcal{C}, examining subsets of size up to $k+1$ in order increasing w.r.t. inclusion,
when examining U, if all proper subsets are in \mathcal{C}, add U to \mathcal{C} with probability p.
parameter z
build \mathcal{C}^{\prime} by:
a m-tuple V is bad if $\left|\mathcal{C}_{\mid V}\right|>1+m+z$
Delete every bad m-tuple and all simplices using them

Analysis

N : number of $(k+1)$-tuples of \mathcal{C}.
$|\mathcal{C}|=\omega\left(n^{k}\right) \Leftrightarrow N=\omega\left(n^{k}\right)$
$\mathbb{P}[U \in \mathcal{C}]=p^{2^{|U|}-|U|-1}$
$\mathbb{E}[N]=\binom{n}{k+1} p^{2^{k+1}-k-2} \simeq n^{k+1-\alpha\left(2^{k+1}-k-2\right)}$
$\alpha\left(2^{k+1}-k-2\right)<1$ ensures $\mathbb{E}[|\mathcal{C}|]=\omega\left(n^{k}\right)$
$f_{\mathcal{C}^{\prime}}(m) \leq 1+m+z$
B : number of bad m-tuples.
N^{\prime} : number of $(k+1)$-tuples of \mathcal{C}^{\prime}.
$N^{\prime} \geq N-B m\binom{n}{k}$
$\mathbb{P}[V$ bad $] \leq 2^{2^{m}} p^{z+1}$
$\mathbb{E}[B] \leq\binom{ n}{m} 2^{2^{m}} p^{z+1} \simeq 2^{2^{m}} n^{m-\alpha(z+1)}$

Model

n vertices, parameter $p=n^{-\alpha}$
build \mathcal{C} by:
declaring \emptyset and all vertices in \mathcal{C}, examining subsets of size up to $k+1$ in order increasing w.r.t. inclusion,
when examining U, if all proper subsets are in \mathcal{C}, add U to \mathcal{C} with probability p.
parameter z
build \mathcal{C}^{\prime} by:
a m-tuple V is bad if $\left|\mathcal{C}_{\mid V}\right|>1+m+z$
Delete every bad m-tuple and all simplices using them

Analysis

N : number of $(k+1)$-tuples of \mathcal{C}.
$|\mathcal{C}|=\omega\left(n^{k}\right) \Leftrightarrow N=\omega\left(n^{k}\right)$
$\mathbb{P}[U \in \mathcal{C}]=p^{2^{|U|}-|U|-1}$
$\mathbb{E}[N]=\binom{n}{k+1} p^{2^{k+1}-k-2} \simeq n^{k+1-\alpha\left(2^{k+1}-k-2\right)}$
$\alpha\left(2^{k+1}-k-2\right)<1$ ensures $\mathbb{E}[|\mathcal{C}|]=\omega\left(n^{k}\right)$
$f_{\mathcal{C}^{\prime}}(m) \leq 1+m+z$
B : number of bad m-tuples.
N^{\prime} : number of $(k+1)$-tuples of \mathcal{C}^{\prime}.
$N^{\prime} \geq N-B m\binom{n}{k}$
$\mathbb{P}[V$ bad $] \leq 2^{2^{m}} p^{z+1}$
$\mathbb{E}[B] \leq\binom{ n}{m} 2^{2^{m}} p^{z+1} \simeq 2^{2^{m}} n^{m-\alpha(z+1)}$
$\alpha(z+1) \geq m$ ensures $\mathbb{E}[B]=O(1)$ and $\mathbb{E}\left[N^{\prime}\right]=\omega\left(n^{k}\right)$.

Model

n vertices, parameter $p=n^{-\alpha}$
build \mathcal{C} by:
declaring \emptyset and all vertices in \mathcal{C},
examining subsets of size up to $k+1$ in order increasing w.r.t. inclusion,
when examining U, if all proper subsets are in \mathcal{C}, add U to \mathcal{C} with probability p.
parameter z
build \mathcal{C}^{\prime} by:
a m-tuple V is bad if $\left|\mathcal{C}_{\mid V}\right|>1+m+z$
Delete every bad m-tuple and all simplices using them

Analysis

N : number of $(k+1)$-tuples of \mathcal{C}.
$|\mathcal{C}|=\omega\left(n^{k}\right) \Leftrightarrow N=\omega\left(n^{k}\right)$
$\mathbb{P}[U \in \mathcal{C}]=p^{2^{|U|}-|U|-1}$
$\mathbb{E}[N]=\binom{n}{k+1} p^{2^{k+1}-k-2} \simeq n^{k+1-\alpha\left(2^{k+1}-k-2\right)}$
$\alpha\left(2^{k+1}-k-2\right)<1$ ensures $\mathbb{E}[|\mathcal{C}|]=\omega\left(n^{k}\right)$
$f_{\mathcal{C}^{\prime}}(m) \leq 1+m+z$
B : number of bad m-tuples.
N^{\prime} : number of $(k+1)$-tuples of \mathcal{C}^{\prime}.
$N^{\prime} \geq N-B m\binom{n}{k}$
$\mathbb{P}[V$ bad $] \leq 2^{2^{m}} p^{z+1}$
$\mathbb{E}[B] \leq\binom{ n}{m} 2^{2^{m}} p^{z+1} \simeq 2^{2^{m}} n^{m-\alpha(z+1)}$
$\alpha(z+1) \geq m$ ensures $\mathbb{E}[B]=O(1)$ and $\mathbb{E}\left[N^{\prime}\right]=\omega\left(n^{k}\right)$.

For $\frac{1}{2^{k+1}-k-2}>\alpha \geq \frac{m}{z+1}$ there are complexes \mathcal{K} on n vertices with $f_{\mathcal{K}}(m) \leq 1+m+z$ and $|\mathcal{K}|=\omega\left(n^{k}\right)$.

Model

n vertices, parameter $p=n^{-\alpha}$
build \mathcal{C} by:
declaring \emptyset and all vertices in \mathcal{C},
examining subsets of size up to $k+1$ in order increasing w.r.t. inclusion,
when examining U, if all proper subsets are in \mathcal{C}, add U to \mathcal{C} with probability p.
parameter z
build \mathcal{C}^{\prime} by:
a m-tuple V is bad if $\left|\mathcal{C}_{\mid V}\right|>1+m+z$
Delete every bad m-tuple and all simplices using them

Analysis

N : number of $(k+1)$-tuples of \mathcal{C}.
$|\mathcal{C}|=\omega\left(n^{k}\right) \Leftrightarrow N=\omega\left(n^{k}\right)$
$\mathbb{P}[U \in \mathcal{C}]=p^{2^{|U|}-|U|-1}$
$\mathbb{E}[N]=\binom{n}{k+1} p^{2^{k+1}-k-2} \simeq n^{k+1-\alpha\left(2^{k+1}-k-2\right)}$
$\alpha\left(2^{k+1}-k-2\right)<1$ ensures $\mathbb{E}[|\mathcal{C}|]=\omega\left(n^{k}\right)$
$f_{\mathcal{C}^{\prime}}(m) \leq 1+m+z$
B : number of bad m-tuples.
N^{\prime} : number of $(k+1)$-tuples of \mathcal{C}^{\prime}.
$N^{\prime} \geq N-B m\binom{n}{k}$
$\mathbb{P}[V$ bad $] \leq 2^{2^{m}} p^{z+1}$
$\mathbb{E}[B] \leq\binom{ n}{m} 2^{2^{m}} p^{z+1} \simeq 2^{2^{m}} n^{m-\alpha(z+1)}$
$\alpha(z+1) \geq m$ ensures $\mathbb{E}[B]=O(1)$ and $\mathbb{E}\left[N^{\prime}\right]=\omega\left(n^{k}\right)$.

For $\frac{1}{2^{k+1}-k-2}>\alpha \geq \frac{m}{z+1}$ there are complexes \mathcal{K} on n vertices with $f_{\mathcal{K}}(m) \leq 1+m+z$ and $|\mathcal{K}|=\omega\left(n^{k}\right)$.
Works for $z=\left(2^{k+1}-k-2\right) m$

Not just hypergraphs...

Condorcet's paradox in voting systems.
Ask each voter to rank (=order) the candidates.
The majority rule may not combine into an order.

$$
123: 1 / 3,231: 1 / 3,312: 1 / 3
$$

Not just hypergraphs...

Condorcet's paradox in voting systems.
Ask each voter to rank (=order) the candidates.
The majority rule may not combine into an order.
$123: 1 / 3,231: 1 / 3,312: 1 / 3$

A set of permutations is consistent if the majority rule combines into an order.

How large can a consistent set of permutations on $[n]$ be?

Not just hypergraphs...

Condorcet's paradox in voting systems.
Ask each voter to rank (=order) the candidates.
The majority rule may not combine into an order.
$123: 1 / 3,231: 1 / 3,312: 1 / 3$

A set of permutations is consistent if the majority rule combines into an order.

How large can a consistent set of permutations on $[n]$ be?

Shatter function of a family of orders on $[n]$.
Restriction of an order: induced order.
\mathcal{F} a family of orders.
$f_{\mathcal{F}}(k)=$ the maximum number of restrictions on a k-element subset.

Consistent $\Rightarrow f_{\mathcal{F}}(3)<6 \Rightarrow|\mathcal{F}|$ at most exponential in n.

Thank you for your attention!

A few words on the lower bound...
$t_{k}(m)>\left(2^{k+1}-k-1\right) m-2^{4 k}$
\Leftrightarrow every hypergraph with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m-2^{4 k}$ has size $O\left(n^{k}\right)$

A few words on the lower bound...

$$
\begin{aligned}
& t_{k}(m)>\left(2^{k+1}-k-1\right) m-2^{4 k} \\
& \Leftrightarrow \text { every hypergraph with } f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m-2^{4 k} \text { has size } O\left(n^{k}\right)
\end{aligned}
$$

Ingredients:
d-dimensional trees, degree of a $(d-1)$-dimensional simplex

A few words on the lower bound...
$t_{k}(m)>\left(2^{k+1}-k-1\right) m-2^{4 k}$
\Leftrightarrow every hypergraph with $f_{\mathcal{H}}(m) \leq\left(2^{k+1}-k-1\right) m-2^{4 k}$ has size $O\left(n^{k}\right)$

Ingredients:
d-dimensional trees, degree of a $(d-1)$-dimensional simplex

Core of the argument:

Analysis proceed by increasing dimension.
Many d-dimensionals simplices \Rightarrow subcomplex with all $(d-1)$-simplices of high degree
\Rightarrow many d-trees that can be combined to find a large trace
Trees have a prescribed density (\#simplices / \#vertices) and allow combination ("balanced").
Adaptation of a technique of Bukh-Conlon (edge density in graphs with forbidden patterns).

