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H(P ) ⊆ 2P , the set of all subsets of P (including ∅).
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Local Global

The two questions are related at a combinatorial level.

Ignore repetitions.
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Exponential/polynomial dichotomy.
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Better bound on the approximation ratio of the greedy algorithm.

O(log |opt|) in place of O(log n) where n = number of sets.

(p, q)-theorem

then some c(p, q, d) points suffice to hit all sets.

If among any p sets some q intersect,

Usually stated with d ≤ (dual) VC-dimension but really uses fH(n) = O(nd).

Examples of applications to Hitting-set problem:

Find: a smallest Y ⊆ X s.t. Ai ∩ Y 6= ∅ for i = 1, 2, . . . , n

Given: sets A1, A2, . . . , An ⊂ X (' a hypergraph)

ε-net theorem.
O(dε log 1

ε ) points suffice to hit all sets of size ≥ εn.

ε-approximation theorem.

O( dε2 log 1
ε ) points suffice to approximate all sets of size ≥ εn.

fractional Helly theorem

If ≥ α
(
n
d+1

)
of the (d+ 1)-element subsets intersect,

then a proportion ≥ β(α, d) of the sets intersect.
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How does tk(m) grow with k and m?

For halfplanes in R2, fH(3) = 8 and fH(4) ≤ 14.
⇒ Sauer’s lemma gives only O(n3)
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a simplicial complex K such that |K| = |H| and fK ≤ fH.
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(
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.

Compression lemma allows to consider H as a simplicial complex.

H consists of ∅, n vertices, some edges, some triangles.

If Q ∈ H with |Q| = 4 then fH(4) ≥ |H|Q| = 16.

Reformulation:

B-H for (k,m) = (2, 4)

Add triangles and delete edges so that: { for every triangle, the 3 edges remain,

on any 4 vertices, # added triangles ≤ # deleted edges.

Contradictory incentives:

Forbidden configurations:

in each triangle , the degree sum to at most 2 + 2(n− 3)

more triangles ⇒ fewer edges,

fewer edges ⇒ fewer triangles

at each vertex, # triangles ≤ # edges
2



Proof of the upper bound...

tk(m) ≤ (2k+1 − k − 1)m+ 1
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... by the ”probabilistic method”.

Ex.: Any graph can be made bipartite by throwing away at most half of its edges.

Partition the vertices into 2 classes by flipping unbiased coins,

on average, half of the edges are monoclass,

there exists a partition no worse than the average.

Ex.: The Ramsey number R(k, k) is at least 2k/2.

Uniform random 2-coloration of the edges of Kn.

Probability that k vertices span a monochromatic subgraph ≤ 2

2(
k
2)

.

Probability that coloring has a monochromatic k-set ≤
(
n
k

)
2−(k

2)+1

Look for the largest k such that
(
n
k

)
2−(k

2)+1 < 1
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Delete every m-tuple of vertices supporting too many simplices.
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Not just hypergraphs...

Shatter function of a family of orders on [n].

Restriction of an order: induced order.
F a family of orders.

fF (k) = the maximum number of
restrictions on a k-element subset.

Condorcet’s paradox in voting systems.
Ask each voter to rank (=order) the candidates.

The majority rule may not combine into an order.

123 : 1/3, 231 : 1/3, 312 : 1/3

A set of permutations is consistent if the majority rule combines into an order.

How large can a consistent set of permutations on [n] be?

Consistent ⇒ fF (3) < 6 ⇒ |F| at most exponential in n.
[Raz’00]



Thank you for your attention!
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tk(m) > (2k+1 − k − 1)m− 24k

⇔ every hypergraph with fH(m) ≤ (2k+1 − k − 1)m− 24k has size O(nk)

A few words on the lower bound...

Core of the argument:

Ingredients:

d-dimensional trees, degree of a (d− 1)-dimensional simplex

Analysis proceed by increasing dimension.

Trees have a prescribed density (#simplices / #vertices) and allow combination (”balanced”).

Many d-dimensionals simplices ⇒ subcomplex with all (d− 1)-simplices of high degree

⇒ many d-trees that can be combined to find a large trace

Adaptation of a technique of Bukh-Conlon (edge density in graphs with forbidden patterns).


