The Computational Geometry of Congruence Testing

Part I. Testing two geometric objects for congruence, i.e., whether they are the same up to translations and rotations (and possibly reflections) is a fundamental question of geometry.

In the first part, I will survey the various algorithmic techniques that have been used since the 1970s to solve the problem in two and three dimensions in $O(n \log n)$ time for two n-point sets, such as string matching, planar graph isomorphism (Sugihara [6]), and the reduction technique of Atkinson [3].

In d-dimensions, for small constant d, the best previous algorithm takes $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time (Brass and Knauer [4]). There is also a randomized Monte Carlo algorithm of Akutsu [1] and Matoušek, which takes $O\left(n^{\lfloor d / 2\rfloor / 2} \log n\right)$ time but which may miss to find a congruence, with small probability. I will review the involved techniques: the basic dimension reduction technique of Alt, Mehlhorn, Wagener, and Welzl [2], the canonical forms of Akutsu [1], the closestpair graph of Matoušek.

Part II. In the second part, I will introduce our recent algorithm for solving the 4-dimensional problem in $O(n \log n)$ time (joint work with Heuna Kim [5]). This algorithm will require the study of four-dimensional geometry, in particular the structure of four-dimensional rotations, Hopf fibrations, and the regular polytopes.

References

[1] T. Akutsu. On determining the congruence of point sets in dimensions. Computational Geometry: Theory and Applications, 4(9):247-256, 1998.
[2] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity, and symmetries of geometric objects. Discrete \& Computational Geometry, $3(1): 237-256,1988$.
[3] M. D. Atkinson. An optimal algorithm for geometrical congruence. Journal of Algorithms, 8(2):159-172, 1987.
[4] P. Brass and C. Knauer. Testing the congruence of d-dimensional point sets. International Journal of Computational Geometry and Applications, 12(1\&2):115-124, 2002.
[5] H. Kim and G. Rote. Congruence testing of point sets in 4-space. In S. Fekete and A. Lubiw, editors, 32st International Symposium on Computational Geometry (SoCG 2016), volume 51 of Leibniz International Proceedings in Informatics (LIPIcs), pages 48:1-48:16. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2016. full version in arXiv 1603.07269 .
[6] K. Sugihara. An $n \log n$ algorithm for determining the congruity of polyhedra. Journal of Computer and System Sciences, 29(1):36-47, 1984.

