
The Computational Geometry of Congruence Testing

Part I. Testing two geometric objects for congruence, i.e., whether they are
the same up to translations and rotations (and possibly reflections) is a funda-
mental question of geometry.

In the first part, I will survey the various algorithmic techniques that have
been used since the 1970s to solve the problem in two and three dimensions
in O(n log n) time for two n-point sets, such as string matching, planar graph
isomorphism (Sugihara [6]), and the reduction technique of Atkinson [3].

In d-dimensions, for small constant d, the best previous algorithm takes
O(ndd/3e log n) time (Brass and Knauer [4]). There is also a randomized Monte
Carlo algorithm of Akutsu [1] and Matoušek, which takes O(nbd/2c/2 log n) time
but which may miss to find a congruence, with small probability. I will re-
view the involved techniques: the basic dimension reduction technique of Alt,
Mehlhorn, Wagener, and Welzl [2], the canonical forms of Akutsu [1], the closest-
pair graph of Matoušek.

Part II. In the second part, I will introduce our recent algorithm for solving
the 4-dimensional problem in O(n log n) time (joint work with Heuna Kim [5]).
This algorithm will require the study of four-dimensional geometry, in particular
the structure of four-dimensional rotations, Hopf fibrations, and the regular
polytopes.
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