Adjoint Map Representation for Shape Analysis and Matching

Ruqi Huang, LIX
Joint work with Maks Ovsjanikov. 14 Decmember @ JGA, 2017

Motivation and Target

- Operator-based representations.

Functional maps ${ }^{1}$

1 Functional Maps: a Flexible Representation of Maps between Shapes, M. Ovsjanikov et al., SIGGRAPH, 2012; 2 Map-based Exploration of Intrinsic Shape Differences and Variability, R. Rustamov et al., SIGGRAPH 2013.

Motivation and Target

- Operator-based representations.
- Still have some limitations.

Functional maps ${ }^{1}$

1 Functional Maps: a Flexible Representation of Maps between Shapes, M. Ovsjanikov et al., SIGGRAPH, 2012; 2 Map-based Exploration of Intrinsic Shape Differences and Variability, R. Rustamov et al., SIGGRAPH 2013.

Motivation and Target

- Operator-based representations.
- Still have some limitations.

Functional maps ${ }^{1}$

- Propose to consider Adjoint Map Representation. Complementary to the existing operators.

1 Functional Maps: a Flexible Representation of Maps between Shapes, M. Ovsjanikov et al., SIGGRAPH, 2012; 2 Map-based Exploration of Intrinsic Shape Differences and Variability, R. Rustamov et al., SIGGRAPH 2013.

Overview

Overview

- Formulation: definition, connection to the previous operators, properties.

Overview

- Formulation: definition, connection to the previous operators, properties.
- Applications:

Bi-directional shape matching

Joint shape Analysis

Functional Maps

$$
T_{M, N}
$$

Functional Maps

Functional Maps

- Preserves function value, but is not aware of shape deformation.

Shape Difference Operators

[R. Rustamov et. al, SIGGRAPH 2013]

$$
\int_{M} g D_{M, N}^{A}(f) d \nu_{M}=\int_{N} C_{M, N}(g) C_{M, N}(f) d \nu_{N}
$$

1 Map-based Exploration of Intrinsic Shape Differences and Variability, R. Rustamov et al., SIGGRAPH 2013.

Shape Difference Operators

[R. Rustamov et. al, SIGGRAPH 2013]

$$
\int_{M} g D_{M, N}^{A}(f) d \nu_{M}=\int_{N} C_{M, N}(g) C_{M, N}(f) d \nu_{N}
$$

- Does not transform information (function) across different shapes.

1 Map-based Exploration of Intrinsic Shape Differences and Variability, R. Rustamov et al., SIGGRAPH 2013.

Formulation

Adjoint Representation: Definition

Definition: Given two shapes M, N and map $T: M \rightarrow N$, we define the adjoint functional map, $X_{M, N}: L^{2}(M) \rightarrow L^{2}(N)$ such that:

$$
\left\langle X_{M, N}\left(f_{M}\right), f_{N}\right\rangle_{N}=\left\langle f_{M}, C_{N, M}\left(f_{N}\right)\right\rangle_{M}
$$

Adjoint Representation: Definition

Definition: Given two shapes M, N and map $T: M \rightarrow N$, we define the adjoint functional map, $X_{M, N}: L^{2}(M) \rightarrow L^{2}(N)$ such that:

$$
\left\langle X_{M, N}\left(f_{M}\right), f_{N}\right\rangle_{N}=\left\langle f_{M}, f_{N} \circ T\right\rangle_{M}
$$

Adjoint Representation: Definition

Definition: Given two shapes M, N and map $T: M \rightarrow N$, we define the adjoint functional map, $X_{M, N}: L^{2}(M) \rightarrow L^{2}(N)$ such that:

$$
\left\langle X_{M, N}\left(f_{M}\right), f_{N}\right\rangle_{N}=\left\langle f_{M}, f_{N} \circ T\right\rangle_{M}
$$

L^{2}-inner product: $\langle f, g\rangle=\int f g d \nu \Rightarrow X_{M, N}^{A}$: Area-based adjoint H_{0}^{1}-inner product: $\langle f, g\rangle=\int \nabla f \cdot \nabla g d \nu \Rightarrow X_{M, N}^{C}$: Conformal adjoint

Adjoint Representation: Definition

Definition: Given two shapes M, N and map $T: M \rightarrow N$, we define the adjoint functional map, $X_{M, N}: L^{2}(M) \rightarrow L^{2}(N)$ such that:

$$
\left\langle X_{M, N}\left(f_{M}\right), f_{N}\right\rangle_{N}=\left\langle f_{M}, f_{N} \circ T\right\rangle_{M}
$$

Well-defined
L^{2}-inner product: $\langle f, g\rangle=\int f g d \nu \Rightarrow X_{M, N}^{A}$: Area-based adjoint H_{0}^{1}-inner product: $\langle f, g\rangle=\int \nabla f \cdot \nabla g d \nu \Rightarrow X_{M, N}^{C}$: Conformal adjoint

Adjoint Representation: Property

If $T: M \rightarrow N$ is a bijection*, then the induced representations satisfy:

$$
X_{M, N}=D_{N, M} C_{M, N}
$$

Adjoint Representation: Property

If $T: M \rightarrow N$ is a bijection*:

$$
\begin{gathered}
X_{M, N}^{A}=C_{N, M}^{-1} \text { if and only if } T \text { is area-presearving; } \\
X_{M, N}^{C}=C_{N, M}^{-1} \text { if and only if } T \text { is conformal. }
\end{gathered}
$$

Adjoint Representation: Discretization

General Discretization scheme:

- Shapes are triangulated discrete surfaces
- Low-rank approximation:
$C_{M, N}: \operatorname{span}\left\{\phi_{1}^{M}, \cdots, \phi_{k_{M}}^{M}\right\} \rightarrow \operatorname{span}\left\{\phi_{1}^{N}, \cdots, \phi_{k_{N}}^{N}\right\}$

Adjoint Representation: Discretization

General Discretization scheme:

- Shapes are triangulated discrete surfaces
- Low-rank approximation: $C_{M, N}: \operatorname{span}\left\{\phi_{1}^{M}, \cdots, \phi_{k_{M}}^{M}\right\} \rightarrow \operatorname{span}\left\{\phi_{1}^{N}, \cdots, \phi_{k_{N}}^{N}\right\}$
- Area-based: $X_{M, N}^{A}=C_{N, M}^{T}$
- Conformal: $X_{M, N}^{C}=\Lambda_{N}^{+} C_{N, M}^{T} \Lambda_{M}, \Lambda_{M}=\operatorname{diag}\left\{\lambda_{1}, \cdots, \lambda_{k_{M}}\right\}$

Applications

Bi-directional Shape Matching

Bi-directional Shape Matching

Standard approach ${ }^{1}$ (one-directional)

$$
\begin{gathered}
E_{M, N}(C)=\|C F-G\|^{2}+\alpha\left\|\Delta_{N} C-C \Delta_{M}\right\|^{2} \\
\hat{C}_{M, N}=\arg \min E_{M, N}\left(C_{M, N}\right)
\end{gathered}
$$

1 Functional Maps: a Flexible Representation of Maps between Shapes, M. Ovsjanikov et al., SIGGRAPH 2012.

Bi-directional Shape Matching

Coupled Functional Maps ${ }^{1}$:

$$
\begin{aligned}
\left(\hat{C}_{M, N}, \hat{C}_{N, M}\right)= & \arg \min E_{M, N}\left(C_{M, N}\right)+E_{N, M}\left(C_{N, M}\right) \\
& +\beta\left\|C_{M, N} C_{N, M}-I d\right\|^{2}
\end{aligned}
$$

Bi-directional Shape Matching

Coupled Functional Maps ${ }^{1}$:

$$
\begin{aligned}
\left(\hat{C}_{M, N}, \hat{C}_{N, M}\right)= & \arg \min E_{M, N}\left(C_{M, N}\right)+E_{N, M}\left(C_{N, M}\right) \\
& +\beta\left\|C_{M, N} C_{N, M}-I d\right\|^{2}
\end{aligned}
$$

Bi-directional Shape Matching

Our approach:

$$
\begin{aligned}
\left(\hat{C}_{M, N}, \hat{C}_{N, M}\right)= & \arg \min E_{M, N}\left(C_{M, N}\right)+E_{N, M}\left(C_{N, M}\right) \\
& +\gamma_{1}\left\|X_{M, N}^{A}-C_{M, N}\right\|^{2}+\gamma_{2}\left\|X_{M, N}^{C}-C_{M, N}\right\|^{2}
\end{aligned}
$$

Bi-directional Shape Matching

Our approach:
$\left(\hat{C}_{M, N}, \hat{C}_{N, M}\right)=\arg \min E_{M, N}\left(C_{M, N}\right)+E_{N, M}\left(C_{N, M}\right)$

$$
+\gamma_{1}\left\|C_{N, M}^{T}-C_{M, N}\right\|^{2}+\gamma_{2}\left\|\Lambda_{N} C_{M, N}-C_{N, M}^{T} \Lambda_{M}\right\|^{2}
$$

Bi-directional Shape Matching

Regular Fmap + ICP

Adjoint Regularization + ICP

Bi-directional Shape Matching

Source Shape

Coverage = 5.0\%

Coverage $=38.3 \%$

Coverage $=71.6 \%$

Coverage $=49.8 \%$

Bi-directional Shape Matching

Joint Shape Analysis

Where are the jointly most distorted areas in the collection?

Joint Shape Analysis

Previous approach ${ }^{1}$ (based on shape difference):

- Needs to choose a base shape - biased result;
- Not consistent.

1 Analysis and Visualization of Maps Between Shapes, M. Ovsjanikov et al., CGF 2013.

Joint Shape Analysis

Our approach :

- The adjoint functional map reflects shape deformation and transform information across shapes at the same time.
- Extract a collection of consistent basis, using the approach of Wang et al. ${ }^{1}$;
- Find the jointly most distorted areas, by using the adjoint maps, rather than the functional maps within the same framework.

1 Image Co-segmentation via Consistent Functional Maps, F. Wang et al., ICCV 2013.

Joint Shape Analysis

Our approach :

- Find consistent $f=\left[f_{1}, f_{2}, \ldots, f_{n}\right]$ s.t. $\sum_{i, j}\left\|C_{i j} f_{i}-f_{j}\right\|_{L^{2}}=0$
- In the space spanned by all the consistent f, maximize $\sum_{i, j}\left\|X_{i j} f_{i}-f_{j}\right\|_{L^{2}}$.

Joint Shape Analysis

Our approach :

Joint Shape Analysis

Order the highlighted deformations with a unified measure.

Joint Shape Analysis

Something New Ongoing

Something New Ongoing

Conclusion

The adjoint map representation

- both transfers information and reflects deformation.
- can be obtained without extra effort.

Thanks for your attention! Questions?

Acknowledgement: This work is supported by Marie-Curie CIG-334283, a CNRS chaire d'excellence, chaire Jean Marjoulet from Ecole Polytechnique, FUI project TANDEM 2, and a Google Focused Research Award.

Backup

Proposition. Let $X_{M, N}^{A}$ be the area-based adjoint operator of $C_{N, M}$, and let $\kappa=X_{N, M}^{A}\left(\mathbf{1}_{N}\right)$, then we have

$$
X_{M, N}^{A}(\kappa \cdot f)=C_{M, N}(f)
$$

