Implementing Delaunay triangulations of the Bolza surface

Iordan Iordanov Monique Teillaud

Journées de Géométrie Algorithmique 2017
Aussois, France
iñia (1)

Outline

1| Introduction
2| The Bolza Surface

3| Background from [BTV, SoCG'16]
4| Data Structure
5| Incremental Insertion
6| Results

7| Future work

Iñía llan
(1)

Outline

1| Introduction
2| The Bolza Surface
3| Background from [BTV, SoCG'16]
4 Data Structure5| Incremental Insertion
6| Results
7| Future work
Eñía

Motivation

Periodic triangulations: Euclidean vs hyperbolic

Motivation

Applications

[Sausset, Tarjus, Viot]

[Chossat, Faye, Faugeras]

[Balazs, Voros]

Motivation

Beautiful groups

- Fuchsian groups
- finitely presented groups
- triangle groups

State of the art

Closed Euclidean manifolds
■ Algorithms 2D [Mazón, Recio], 3D [Dolbilin, Huson], dD [Caroli, Teillaud, DCG'16]

- Software (square/cubic flat torus) 2D [Kruithof], 3D [Caroli, Teillaud] CGAL

Closed hyperbolic manifolds

- Algorithms
- Software (Bolza surface)

2D, genus 2 [Bogdanov, Teillaud, Vegter, SoCG'16]
[І., Teillaud, SoCG'17]

Outline

1| Introduction

2| The Bolza Surface

3| Background from [BTV, SoCG'16]
4 Data Structure

5| Incremental Insertion

6| Results

7| Future work

Éñía
(1)

Poincaré model of the hyperbolic plane \Vdash^{2}

Hyperbolic translations

Hyperbolic translations

Iñia lla
(1)

Bolza surface

What is it?
■ Closed, compact, orientable surface of genus 2.
■ Constant negative curvature \longrightarrow locally hyperbolic metric.
■ The most symmetric of all genus-2 surfaces.

Bolza surface

Fuchsian group \mathcal{G} with finite presentation

$$
\mathcal{G}=\langle a, b, c, d \mid a b c d \bar{a} \bar{b} \bar{c} \bar{d}\rangle
$$

\mathcal{G} contains only translations (and $\mathbb{1}$)
Bolza surface

$$
\mathcal{M}=\Vdash^{2} / \mathcal{G}
$$

with projection $\operatorname{map} \pi_{\mathcal{M}}: \mathbb{H}^{2} \rightarrow \mathcal{M}$

Bolza surface

Fuchsian group \mathcal{G} with finite presentation

$$
\mathcal{G}=\langle a, b, c, d \mid a b c d \bar{a} \bar{b} \bar{c} \bar{d}\rangle
$$

\mathcal{G} contains only translations (and $\mathbb{1}$)
Bolza surface

$$
\mathcal{M}=\mathbb{H}^{2} / \mathcal{G}
$$

with projection $\operatorname{map} \pi_{\mathcal{M}}: \mathbb{H}^{2} \rightarrow \mathcal{M}$
$\mathcal{A}=[a, \bar{b}, c, \bar{d}, \bar{a}, b, \bar{c}, d]=\left[g_{0}, g_{1}, \ldots, g_{7}\right]$
$g_{k}=\left[\begin{array}{cc}\alpha & \beta_{k} \\ \bar{\beta}_{k} & \bar{\alpha}\end{array}\right], \quad g_{k}(z)=\frac{\alpha z+\beta_{k}}{\bar{\beta}_{k} z+\bar{\alpha}}, \quad \alpha=1+\sqrt{2}, \quad \beta_{k}=e^{i k \pi / 4} \sqrt{2 \alpha}$

Bolza surface

Implementing Delaunay triangulations of the Bolza surface

Hyperbolic octagon

iñía lla
(1)

Hyperbolic octagon

Fundamental domain $\mathcal{D}_{O}=$ Dirichlet region of O
iñia llan

Hyperbolic octagon

"Original" domain \mathcal{D} : contains exactly one point of each orbit
iñia llan

Outline

1| Introduction
2| The Bolza Surface
3| Background from [BTV, SoCG'16]
4 Data Structure5| Incremental Insertion6| Results
7| Future work
Éñía(1)

Criterion

Systole sys $(\mathcal{M})=$

minimum length of a non-contractible loop on \mathcal{M}

Criterion

Systole sys $(\mathcal{M})=$

 minimum length of a non-contractible loop on \mathcal{M}

Criterion

Systole sys $(\mathcal{M})=$

 minimum length of a non-contractible loop on \mathcal{M}

Criterion

$$
\text { Systole sys }(\mathcal{M})=\begin{array}{r}
\text { minimum length of a } \\
\text { non-contractible loop on } \mathcal{M}
\end{array}
$$

Criterion

Systole sys $(\mathcal{M})=$ minimum length of a non-contractible loop on \mathcal{M}

$$
\pi_{\mathcal{M}}\left(D T_{\boldsymbol{H}}(\mathcal{G} S)\right)
$$

Criterion

Systole sys $(\mathcal{M})=$ minimum length of a non-contractible loop on \mathcal{M}
S set of points in \Vdash^{2} $\delta_{S}=$ diameter of largest disks in H^{2} not containing any point of $\mathcal{G S}$
$\delta_{S}<\frac{1}{2} \operatorname{sys}(\mathcal{M})$
$\Longrightarrow \pi_{\mathcal{M}}\left(D T_{\text {H }}(\mathcal{G} S)\right)=D T_{\mathcal{M}}(S)$ is a simplicial complex
\Longrightarrow The usual incremental algorithm can be used

Systole on the octagon

iñia llan
(1)

Set of dummy points

iñia llan
(1)

Set of dummy points vs. criterion

Iñía llan
(1)

Delaunay triangulation of the dummy points

iñia llan

Delaunay triangulation of the Bolza surface

Algorithm:
1 initialize with dummy points
2 insert points in S
3 remove dummy points

Ćnia (1)

Outline

1| Introduction

2| The Bolza Surface
3| Background from [BTV, SoCG'16]
4| Data Structure
5| Incremental Insertion

6| Results

7| Future work

Éñía
(1)

Notation

iñía
©

Property of $D T_{\text {H }}(\mathcal{G} S)$

$S \subset \mathcal{D}$ input point set
s.t. criterion $\delta_{S}<\frac{1}{2} \operatorname{sys}(\mathcal{M})$ holds
σ face of $D T_{\text {버 }}(\mathcal{G S})$ with at least one vertex in \mathcal{D}
$\longrightarrow \sigma$ is contained in $\mathcal{D}_{\mathcal{N}}$

Canonical representative of a face

Each face of $D T_{\mathcal{M}}(S)$ has infinitely many pre-images in $D T_{\mathbb{H}}(\mathcal{G S})$

iñia lyon

Canonical representative of a face

at least one pre-image with at least one vertex in \mathcal{D}

Iñía lla

Canonical representative of a face

Case: face with 3 vertices in \mathcal{D}

iñia lyon

Canonical representative of a face

Case: face with 3 vertices in \mathcal{D}

iñia lyon

Canonical representative of a face

Case: face with 3 vertices in \mathcal{D}

iñia lyon

Canonical representative of a face

Case: face with 2 vertices in \mathcal{D}

iñia lyon

Canonical representative of a face

Case: face with 2 vertices in \mathcal{D}

iñía

Canonical representative of a face

Case: face with 2 vertices in \mathcal{D}

iñía

Canonical representative of a face

Case: face with 1 vertex in \mathcal{D}

iñia lyon

Canonical representative of a face

Case: face with 1 vertex in \mathcal{D}

iñia lyon

Canonical representative of a face

india ll a
(1)

$\mathbb{C} G \mathbb{A} \mathbb{L}$ Triangulations

iñia llan
(1)

Face of $D T_{\mathcal{M}}(S)$

Face of $D T_{\mathcal{M}}(S)$

ű̃́a lor
(1)

Outline

1| Introduction
2| The Bolza Surface
3| Background from [BTV, SoCG'16]
4| Data Structure
5| Incremental Insertion
6| Results
7| Future work
द́ñía

Point Location

Point Location

Point Location

Cñ̃a
(1)

Point Location

Point Insertion

"hole" = topological disk

(1)

Point Insertion

"hole" = topological disk

(1)

Point Insertion

Computations on translations

Dehn's algorithm (slightly modified)

(1)

Predicates

Orientation $(p, q, r)=\operatorname{sign}\left|\begin{array}{lll}p_{x} & p_{y} & 1 \\ q_{x} & q_{y} & 1 \\ r_{x} & r_{y} & 1\end{array}\right|$

$\operatorname{InCircle}(p, q, r, s)=\operatorname{sign}\left|\begin{array}{llll}p_{x} & p_{y} & p_{x}^{2}+p_{y}^{2} & 1 \\ q_{x} & q_{y} & q_{x}^{2}+q_{y}^{2} & 1 \\ r_{x} & r_{y} & r_{x}^{2}+r_{y}^{2} & 1 \\ s_{x} & s_{y} & s_{x}^{2}+s_{y}^{2} & 1\end{array}\right|$

Ćnia (1)

Predicates

Suppose that the points in S are rational.
Input of the predicates can be images of these points under $\nu \in \mathcal{N}$.

$$
g_{k}(z)=\frac{\alpha z+e^{i k \pi / 4} \sqrt{2 \alpha}}{e^{-i k \pi / 4} \sqrt{2 \alpha} z+\alpha}, \quad \alpha=1+\sqrt{2}, \quad k=0,1, \ldots, 7
$$

■ the Orientation predicate has algebraic degree at most 20

- the InCircle predicate has algebraic degree at most 72

Point coordinates represented with CORE: :Expr
\longrightarrow (filtered) exact evaluation of predicates
Iñio llan

Outline

1| Introduction

2| The Bolza Surface
3| Background from [BTV, SoCG'16]
4 | Data Structure
5| Incremental Insertion

6| Results

7| Future work

Éñía
(1)

Demo

The code is on GitHub! Let's see a demo.

Experiments

Fully dynamic implementation
1 million random points

- C $G \mathbb{A} L$ Euclidean DT (double)
$\sim 1 \mathrm{sec}$.
- $\mathbb{C} \mathbb{A} \mathbb{L}$ Euclidean DT (CORE::Expr)

■ Hyperbolic periodic DT (CORE::Expr)
$\sim 13 \mathrm{sec}$.
$\sim 34 \mathrm{sec}$.

Experiments

Fully dynamic implementation
1 million random points

- C $G \mathbb{A} L$ Euclidean DT (double)
$\sim 1 \mathrm{sec}$.
- G $\mathbb{A} L$ Euclidean DT (CORE::Expr)

■ Hyperbolic periodic DT (CORE::Expr)
$\sim 13 \mathrm{sec}$.
$\sim 34 \mathrm{sec}$.
Predicates
■ 0.76% calls to predicates involving translations in \mathcal{N}

- responsible for 36% of total time spent in predicates

Dummy points can be removed after insertion of 17-72 random points.

Ćnia (1)

Outline

1| Introduction

2| The Bolza Surface
3| Background from [BTV, SoCG'16]
4 | Data Structure
5| Incremental Insertion

6| Results

7| Future work

Éñía
(1)

Future work

- Implement 2D periodic hyperbolic mesh
- Algorithm for:
- More general genus-2 surfaces
- Surfaces of genus > 2

Iñía llan
(1)

Thank you for your attention!

Source code and Maple sheets available online: https://members.loria.fr/Monique.Teillaud/DT_Bolza_SoCG17/ Ćnia (1)

