A bijective proof of the enumeration of maps in higher genus.

Mathias Lepoutre

LIX, École polytechnique

December 13, 2017

Theorem (Tutte 60's for g = 0, Bender Canfield 91 for g > 0) For any $g \ge 0$, the generating series $M_g(z)$ of maps of genus genumerated by edges is a rational function of z and $\sqrt{1-12z}$. Theorem (Tutte 60's for g = 0, Bender Canfield 91 for g > 0)

For any $g \ge 0$, the generating series $M_g(z)$ of maps of genus g enumerated by edges is a rational function of z and $\sqrt{1-12z}$.

Blossoming maps:

- in the plane: Schaeffer 97, Bouttier Di Francesco Guitter 02, Poulhalon Schaeffer 06, Bernardi 07...
- in higher genus: Bernardi Chapuy 11, Despres Gonçalves Leveque 17...

Theorem (Tutte 60's for g = 0, Bender Canfield 91 for g > 0)

For any $g \ge 0$, the generating series $M_g(z)$ of maps of genus g enumerated by edges is a rational function of z and $\sqrt{1-12z}$.

Blossoming maps:

• in the plane: Schaeffer 97, Bouttier Di Francesco Guitter 02, Poulhalon Schaeffer 06, Bernardi 07...

• in higher genus: Bernardi Chapuy 11, Despres Gonçalves Leveque 17... Labeled maps (mobiles):

- in the plane: Cori Vauquelin 81, Schaeffer 98, Bouttier Di Francesco Guitter 04...
- in higher genus: Chapuy Marcus Schaeffer 09...
- on non-orientable surfaces: Bettinelli 16, Chapuy Dolega 17...

Sommaire

Orientations of a map

- Definitions
- Structure

Opening and closing maps

- The opening of a map
- The closure of a blossoming map

Enumeration and rationality

- Reducing a map to a scheme
- Analysing a scheme
- Rationality

A map (black) and its dual (grey)

The convention for orienting a map (black) and its dual (grey)

A classical representation of a toroidal map

The radial construction

The radial construction

Proposition

There is a bijection between:

- general maps of genus g with n edges, and
- 4-valent bicolorable maps of genus g with n vertices.

Bijection for maps

A 4-valent bicolorable toroidal map along with its dual-geodesic orientation

Definition Bicolorable orientation: any dual cycle has as many edges going to the left and to the right.

Mathias Lepoutre (École polytechnique)

Bijection for maps

Definition

Eulerian map: all vertices have even degree

Eulerian orientation: all vertices have equal out- and in-degrees

Mathias Lepoutre (École polytechnique)

Bijection for maps

The orientation has no clockwise cycle...

... It is the dual-geodesic orientation

Theorem (Propp 93)

The set of bicolorable orientations of a fixed map with face-flip as a cover relation forms a distributive lattice.

Its minimum is the dual-geodesic orientation.

Theorem (Propp 93)

The set of bicolorable orientations of a fixed map with face-flip as a cover relation forms a distributive lattice. Its minimum is the dual-geodesic orientation.

Corollary

The dual-geodesic orientation is the unique bicolorable orientation with no clockwise face.

Sommaire

Orientations of a map

- Definitions
- Structure

Opening and closing maps

- The opening of a map
- The closure of a blossoming map

Enumeration and rationality

- Reducing a map to a scheme
- Analysing a scheme
- Rationality

A 4-valent (Eulerian) planar map

With its dual-geodesic orientation

- An unvisited ingoing edge is followed
- An unvisited outgoing edge is cut
- A visited leaf is ignored
- A visited outoing edge is followed

- An unvisited ingoing edge is followed
- An unvisited outgoing edge is cut
- A visited leaf is ignored
- A visited outoing edge is followed

- An unvisited ingoing edge is followed
- An unvisited outgoing edge is cut
- A visited leaf is ignored
- A visited outoing edge is followed

- An unvisited ingoing edge is followed
- An unvisited outgoing edge is cut
- A visited leaf is ignored
- A visited outoing edge is followed

- An unvisited ingoing edge is followed
- An unvisited outgoing edge is cut
- A visited leaf is ignored
- A visited outoing edge is followed

- An unvisited ingoing edge is followed
- An unvisited outgoing edge is cut
- A visited leaf is ignored
- A visited outoing edge is followed

- An unvisited ingoing edge is followed
- An unvisited outgoing edge is cut
- A visited leaf is ignored
- A visited outoing edge is followed

- An unvisited ingoing edge is followed
- An unvisited outgoing edge is cut
- A visited leaf is ignored
- A visited outoing edge is followed

Theorem (Schaeffer 97)

The opening algorithm is a bijection between 4-valent maps and well-rooted Eulerian 4-valent blossoming trees.

A 4-regular bicolorable map with dual-geodesic orientation

We apply the opening algorithm...

The obtained map is the dual of the leftmost breadth-first-search exploration tree
Opening a 4-valent bicolorable map

Indeed, the opening algorithm can be expressed as a walk on corners of the map, and hence has the same execution on a map and its dual

Opening a 4-valent bicolorable map

Indeed, the opening algorithm can be expressed as a walk on corners of the map, and hence has the same execution on a map and its dual

Opening a 4-valent bicolorable map

Theorem (L.)

The opening algorithm is a bijection between bicolorable 4-valent map and well-rooted well-oriented well-labeled 4-valent unicellular maps.

Mathias Lepoutre (École polytechnique)

Bijection for maps

A 4-valent Eulerian rooted tree

The root is reversed

A bud and a leaf following one another are merged

This is repeated until no such pair exists

In the end the 2 remaining leaves are merged

We obtain a map

Theorem (Schaeffer 97)

The closing algorithm is the inverse bijection of the opening algorithm.

Definition

well-oriented: in a tour of the face, each edge is first followed backward.

Mathias Lepoutre (École polytechnique)

Bijection for maps

December 13, 2017 11 / 24

Definition

well-oriented: in a tour of the face, each edge is first followed backward. well-labeled: the difference between adjacent labels correspond to the crossed edges or stems.

Mathias Lepoutre (École polytechnique)

Bijection for maps

Matching stems

We again obtain a map, with its dual-geodesic orientation

Theorem (L.)

The closing algorithm is the inverse bijection of the opening algorithm.

Mathias Lepoutre (École polytechnique)

Bijection for maps

December 13, 2017 11 / 24

Sommaire

Orientations of a map

- Definitions
- Structure

Opening and closing maps

- The opening of a map
- The closure of a blossoming map

3 Enumeration and rationality

- Reducing a map to a scheme
- Analysing a scheme
- Rationality

Well-rooted is an inconveniently global condition

Theorem (Schaeffer 97 for g = 0, L. for g > 0)

For a fixed interior map m with n leaves, there is a 2-to-(n + 1) map from

- well-rooted well-labeled well-oriented 4-regular unicellular map with interior map m, to
- rooted well-labeled well-oriented 4-regular unicellular map with interior map m (which has n leaves).

The structure of unicellular maps

Pruning the map

The opened map contains treelike parts

Pruning the map

Rerooting on the scheme

Rerooting on the scheme

Replace branches by decorated Motzkin paths

There are 6 type of vertices of interior degree 2, each of which can be represented by a decorated Motzkin step

Replace branches by decorated Motzkin paths

Replace branches by decorated Motzkin paths

The series of decorated Motzkin bridges is B(z). The series of decorated Motzkin positive bridges followed by a downstep is D(z).

The series of decorated Motzkin bridges is B(z). The series of decorated Motzkin positive bridges followed by a downstep is D(z).

They satisfy $D = z(1 + 4D + D^2)$ and B = 1 + 4zB + 2zDB.

The series of decorated Motzkin bridges is B(z). The series of decorated Motzkin positive bridges followed by a downstep is D(z).

They satisfy $D = z(1 + 4D + D^2)$ and B = 1 + 4zB + 2zDB.

Hence $B = \frac{1+4D+D^2}{1-D^2}$ and $z = \frac{1}{D^{-1}+4+D}$.

The series of decorated Motzkin bridges is B(z). The series of decorated Motzkin positive bridges followed by a downstep is D(z).

They satisfy $D = z(1 + 4D + D^2)$ and B = 1 + 4zB + 2zDB.

Hence
$$B=rac{1+4D+D^2}{1-D^2}$$
 and $z=rac{1}{D^{-1}+4+D}$,

Lemma (Chapuy Marcus Schaeffer 09)

A series is rational in z if and only if it is rational and symmetric in D.

A series F in D is symmetric in D if $\overline{F(D)} = F(D)$ (avec $\overline{F(D)} := F(D^{-1})$).

The series of decorated Motzkin bridges is B(z). The series of decorated Motzkin positive bridges followed by a downstep is D(z).

They satisfy
$$D=z(1+4D+D^2)$$
 and $B=1+4zB+2zDB$.

Hence
$$B=rac{1+4D+D^2}{1-D^2}$$
 and $z=rac{1}{D^{-1}+4+D}$,

Lemma (Chapuy Marcus Schaeffer 09)

A series is rational in z if and only if it is rational and symmetric in D.

The generating series of Motzkin paths from height *i* to *j* is: $B \cdot D^{|i-j|}$.

We derive from the previous work that the generating series $M^{s}(t)$ of all maps (counted by number of edges) with a given (unlabeled) scheme s is:

$$M^{s}(t) = t^{2g-1} \cdot \frac{2}{t} \int_{0}^{t} z \cdot \frac{\partial T}{\partial z}(z) \cdot \frac{\partial R^{s}}{\partial z}(T(z)) dz,$$

where T is the series of trees, and R^s the series of scheme-rooted well-oriented well-labeled pruned unicellular maps with unlabeled scheme s.

We derive from the previous work that the generating series $M^{s}(t)$ of all maps (counted by number of edges) with a given (unlabeled) scheme s is:

$$M^{s}(t) = t^{2g-1} \cdot \frac{2}{t} \int_{0}^{t} z \cdot \frac{\partial T}{\partial z}(z) \cdot \frac{\partial R^{s}}{\partial z}(T(z)) dz,$$

where T is the series of trees, and R^s the series of scheme-rooted well-oriented well-labeled pruned unicellular maps with unlabeled scheme s.

Theorem (L.)

The generating series $M^{s}(t)$ is a rational function of T(t).

Theorem (L.)

The generating series $M^{s}(t)$ is a rational function of T(t).

Since the set of scheme S_g is finite for any fixed g, it implies that $M_g(t) = \sum_{s \in S_g} M^s(t)$ is rational in T(t), and proves our main theorem.

Theorem (Tutte 60's for g = 0, Bender Canfield 91 for g > 0)

For any g, the generating series $M_g(t)$ is a rational function of T(t).

Lemma (L.) $R^{s}(z)$ is rational and symmetric in D.

Obtaining an equation for a given scheme

$$R^{I} = \prod_{(v_i, v_j) \in E_I} B \cdot D^{|h_i - h_j|}$$

- *I* is a labeled scheme
- E₁ is the set of its edges
- h_i is the label of vertex v_i .
$$R^{I} = \prod_{\substack{(v_{i}, v_{j}) \in E_{I} \\ R^{s}}} B \cdot D^{|h_{i} - h_{j}|}$$
$$R^{s} = \sum_{\substack{h_{1} \cdots h_{n_{v}} \in \mathbb{N} \\ \min(h_{1}, \cdots, h_{n_{v}}) = 0}} \prod_{\substack{(v_{i}, v_{j}) \in E_{s}}} B \cdot D^{|h_{i} - h_{j}|}$$

- *s* is an unlabeled scheme.
- Labels are defined up to translation, so we decide to force the minimal label to be 0.

$$R^{I} = \prod_{(v_{i},v_{j})\in E_{I}} B \cdot D^{|h_{i}-h_{j}|}$$

$$R^{s} = \sum_{\substack{h_{1}\cdots h_{n_{v}}\in\mathbb{N}\\\min(h_{1},\cdots,h_{n_{v}})=0}} \prod_{(v_{i},v_{j})\in E_{s}} B \cdot D^{|h_{i}-h_{j}|}$$

$$= B^{|E_{I}|} \cdot \sum_{S_{0} \subseteq S_{1} \subseteq \cdots \subseteq S_{k}} \prod_{i=1}^{k-1} \frac{D^{Cut(S_{i})}}{1-U^{Cut(S_{i})}}$$

- $\emptyset = S_0 \subsetneq S_1 \subsetneq \cdots \subsetneq S_k = V_s$ is the ordered partition corresponding to the ordering of labels.
- Cut(S) is the number of edges going from S to \overline{S} .

$$R^{I} = \prod_{(v_{i}, v_{j}) \in E_{I}} B \cdot D^{|h_{i} - h_{j}|}$$

$$R^{s} = \sum_{\substack{h_{1} \cdots h_{n_{v}} \in \mathbb{N} \\ \min(h_{1}, \cdots, h_{n_{v}}) = 0}} \prod_{\substack{(v_{i}, v_{j}) \in E_{s}}} B \cdot D^{|h_{i} - h_{j}|}$$

$$= B^{|E_{I}|} \cdot \sum_{\substack{S_{0} \subsetneq S_{1} \subsetneq \cdots \subsetneq S_{k}} \prod_{i=1}^{k-1} \frac{D^{Cut(S_{i})}}{1 - U^{Cut(S_{i})}}$$

$$= B^{|E_{I}|} \cdot \sum_{\substack{S_{0} \subsetneq S_{1} \subsetneq \cdots \subsetneq S_{k}} \prod_{i=1}^{k-1} \Phi(S_{i})$$

•
$$\Phi(S) = \frac{D^{Cut(S)}}{1-D^{Cut(S)}}$$
.

$$R^{I} = \prod_{\substack{(v_{i}, v_{j}) \in E_{I} \\ min(h_{1}, \cdots, h_{n_{v}} \in \mathbb{N} \\ min(h_{1}, \cdots, h_{n_{v}}) = 0}} \prod_{\substack{(v_{i}, v_{j}) \in E_{s} \\ min(h_{1}, \cdots, h_{n_{v}}) = 0}} B \cdot D^{|h_{i} - h_{j}|}$$

$$= B^{|E_{I}|} \cdot \sum_{S_{0} \subsetneq S_{1} \subsetneq \cdots \subsetneq S_{k}} \prod_{i=1}^{k-1} \frac{D^{Cut(S_{i})}}{1 - U^{Cut(S_{i})}}$$

$$= B^{|E_{I}|} \cdot \sum_{S_{0} \subsetneq S_{1} \subsetneq \cdots \varsubsetneq S_{k}} \prod_{i=1}^{k-1} \Phi(S_{i})$$

$$= B^{|E_{I}|} \cdot \sum_{\pi} \prod_{i=1}^{k-1} \Phi(S_{i})$$

• The ordered partition is called π instead of $S_0 \subsetneq S_1 \subsetneq \cdots \subsetneq S_k$.

$$R^{s} = B^{|E_{l}|} \cdot \sum_{\pi} \prod_{i=1}^{k-1} \Phi(S_{i})$$

$$R^{s} = B^{|E_{l}|} \cdot \sum_{\pi} \prod_{i=1}^{k-1} \Phi(S_{i})$$
$$\overline{R^{s}} = (-1)^{|E_{l}|} \cdot B^{|E_{l}|} \cdot \sum_{\pi} \left((-1)^{k-1} \cdot \prod_{i=1}^{k-1} (1 + \Phi(S_{i})) \right)$$

• *B* is antisymmetric.

•
$$\overline{\Phi(S)} = -(1 + \Phi(S)).$$

$$R^{s} = B^{|E_{l}|} \cdot \sum_{\pi} \prod_{i=1}^{k-1} \Phi(S_{i})$$

$$\overline{R^{s}} = (-1)^{|E_{l}|} \cdot B^{|E_{l}|} \cdot \sum_{\pi} \left((-1)^{k-1} \cdot \prod_{i=1}^{k-1} (1 + \Phi(S_{i})) \right)$$

$$= (-1)^{|E_{l}|} \cdot B^{|E_{l}|} \cdot \sum_{\pi} \left((-1)^{k(\pi)-1} \cdot \sum_{\mu < \pi} \prod_{i=1}^{k(\mu)-1} \Phi(S_{i}(\mu)) \right)$$

- $\mu < \pi$ means that π refines μ as an ordered partition.
- We apply the inclusion-exclusion principle.

$$\begin{split} R^{s} &= B^{|E_{l}|} \quad \cdot \sum_{\pi} \prod_{i=1}^{k-1} \Phi(S_{i}) \\ \overline{R^{s}} &= (-1)^{|E_{l}|} \cdot B^{|E_{l}|} \quad \cdot \sum_{\pi} \left((-1)^{k-1} \cdot \prod_{i=1}^{k-1} (1 + \Phi(S_{i})) \right) \\ &= (-1)^{|E_{l}|} \cdot B^{|E_{l}|} \quad \cdot \sum_{\pi} \left((-1)^{k(\pi)-1} \cdot \sum_{\mu < \pi} \prod_{i=1}^{k(\mu)-1} \Phi(S_{i}(\mu)) \right) \\ &= (-1)^{|E_{l}|} \cdot B^{|E_{l}|} \quad \cdot \sum_{\pi} \prod_{i=1}^{k(\pi)-1} \Phi(S_{i}(\pi)) \cdot \sum_{\pi < \rho} \left((-1)^{k(\rho)-1} \right) \end{split}$$

• We swap the two sumations.

- ordered partitions are faces of the permutahedron.
- Euler-Poincaré's formula states:

$$0 = \sum_{i=-1}^{d} (-1)^{i} f_{i}(P),$$

where P is a polytope of degree d with $f_i(P)$ faces of degree i.

$$R^{s} = B^{|\mathcal{E}_{l}|} \cdot \sum_{\pi} \prod_{i=1}^{k-1} \Phi(S_{i})$$
$$\overline{R^{s}} = (-1)^{|\mathcal{E}_{l}|} \cdot B^{|\mathcal{E}_{l}|} \cdot \sum_{\pi} \prod_{i=1}^{k(\pi)-1} \Phi(S_{i}(\pi)) \cdot \sum_{\pi < \rho} ((-1)^{k(\rho)-1})$$

- ordered partitions are faces of the permutahedron.
- Euler-Poincaré's formula states:

$$0 = \sum_{i=-1}^{d} (-1)^{i} f_{i}(P),$$

where P is a polytope of degree d with $f_i(P)$ faces of degree i.

Thanks for your attention!

An offset edge (purple)

Theorem (L.)

The offset graph of a scheme-rooted well-oriented well-labeled unicellular map is acyclic.

Theorem (L.)

The offset graph of a scheme-rooted well-oriented well-labeled unicellular map is acyclic.

With an offset graph:

$$R^{s} = B^{|E_{l}|} \cdot \sum_{S_{0} \subsetneq S_{1} \subsetneq \cdots \subsetneq S_{k}} \left(\prod_{i=1}^{k-1} \Phi(S_{i}) \right) \cdot D^{n_{t}+n_{s}-n_{i}}.$$

With an offset graph:

$$R^{s} = B^{|E_{l}|} \cdot \sum_{S_{0} \subsetneq S_{1} \subsetneq \cdots \subsetneq S_{k}} \left(\prod_{i=1}^{k-1} \Phi(S_{i}) \right) \cdot D^{n_{t}+n_{a}-n_{i}}.$$

By consequence:

$$\overline{R^{s}} = (-1)^{|E_{l}|} \cdot B^{|E_{l}|} \cdot \sum_{\pi} \prod_{i=1}^{k(\pi)-1} \Phi(S_{i}(\pi)) \cdot \sum_{\pi < \rho} \left((-1)^{k(\rho)-1} \cdot D^{-n_{t}(\rho)-n_{a}(\rho)+n_{i}(\rho)} \right)$$

With an offset graph:

$$R^{s} = B^{|E_{l}|} \cdot \sum_{S_{0} \subsetneq S_{1} \subsetneq \cdots \subsetneq S_{k}} \left(\prod_{i=1}^{k-1} \Phi(S_{i}) \right) \cdot D^{n_{t}+n_{a}-n_{i}}.$$

By consequence:

$$\overline{R^{s}} = (-1)^{|E_{l}|} \cdot B^{|E_{l}|} \cdot \sum_{\pi} \prod_{i=1}^{k(\pi)-1} \Phi(S_{i}(\pi)) \cdot \sum_{\pi < \rho} \left((-1)^{k(\rho)-1} \cdot D^{-n_{t}(\rho)-n_{a}(\rho)+n_{i}(\rho)} \right)$$

We need to prove the following lemma:

Lemma (L.) $\sum_{\pi^{-1} < \rho} \left((-1)^{k(\rho) - 1} \cdot U^{-n_t(\rho) - n_a(\rho) + n_i(\rho)} \right) = (-1)^{|E_s|} \cdot D^{n_t(\pi) + n_a(\pi) - n_i(\pi)}$

Mathias Lepoutre (École polytechnique)

Bijection for maps