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Motivation

® Reach,
® metric distorsion,
® variation of tangent space

These are general geometric properties encountered
in the proofs of several theorems that state

topological faithful reconstructions of manifolds

as well as more general subsets of Euclidean
space by simplicial complexes
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Medial Axis

Medial axis of a closed set C is
« set of points who have at least two closest points in C »

Reach of a closed set C
« infimum of distances between C and its medial axis»
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Medial Axis

e Introduced by Herbert Federer (Curvature Measures
1959). classe of sets with positive reach allow to
define curvature measures beyond smooth case.

 Used again in the context of manifold reconstruction
with topological guarantees : Amenta et al. (Ifs),
Boissonnat et al., Dey et al., Niyogi et al.

e A setis convex iff. its reach is infinite

Reach



The Reach

For a compact set K denote by:  |The reach is one way (among others) to
bound the size of topological features.

e rch K its reach,
e rad K its radius, i.e. the radius of the smallest ball enclosing K
Then:

o If rad K < rchK then K is contractible,

Reach

o If r < K then rch (K N B(x,r)) >rch K
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For a closed set S C RY, ds denotes the geodesic distance in S, i.e.
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Metric distorsion

For a closed set S C RY, ds denotes the geodesic distance in S, i.e.
ds(a,b) is the infimum of lengths of paths in S between a and b.

Va,b € S,ds(a,b) < g|a, _p|

= S is simply connected

Metic distorsion is another way to
bound the size of topological features.




Metric distorsion

If S, is a (d — 1)-sphere of radius r in euclidean space R?, then rch 'S, = r
and:

a —b]

2r

Va,b € S,, ds.(a,b) = 2rarcsin




Metric distorsion

Theorem 1. IfS C R? is a closed set, then
rch S = sup {r >0, Va,b €S, |a—b| <2r = ds(a,b) < 2rarcsin

where the sup over the empty set 1s 0.

ja — b]

2r

b,




Corollary: geodesic convexity

Theorem 1. If S C RY is a closed set, then ‘

Corollary 2. Let S C R% be a closed set with positive reach r = rch S > 0.
Then, for any r’ < rchS and any x € R?, if B(x,r') is the closed ball centered
at x with radius r', then S N B(xz,r") is geodesically convex in S.

I

a S




proof of geodesic convexity

Theorem 1. If S C RY is a closed set, then

—b
rch S = sup {r >0, Va,b €S, |a—b| <2r = ds(a,b) < 2rarcsin |a2r |} :

u Corollary 2. Let S C R? be a closed set with positive reach r = rchS > 0.
Then, for any r' < rchS and any x € R?, if B(x,r") is the closed ball centered
at x with radius v, then S N B(x,r") is geodesically convex in S.
R ——————————————

For a contradiction assume a minimizing geodesic
goes outside the ball with radius r’ < rch S:



proof of geodesic convexity

Theorem 1. If S C RY is a closed set, then

—b
rch S = sup {fr‘ >0, Va,b €S, |a—b| <2r = ds(a,b) < 2rarcsin |a2r |} :

u Corollary 2. Let S C R? be a closed set with positive reach r = rchS > 0.
Then, for any r' < rchS and any x € R?, if B(x,r") is the closed ball centered
at x with radius v, then S N B(x,r") is geodesically convex in S.

For a contradiction assume a minimizing geodesic
goes outside the ball with radius r’ < rch S:

Focus on the path between a’ and b’.
The projection on the sphere with
radius r’ decreases lengths and:

Ia/_bl| . |a/_b/|
> 2r arcsin

d / b/ 2 / :
s(a’,b") > 2r" arcsin o 5

A contradiction with the theorem inequality.



Proof of Theorem 1

First the easy direction:

Theorem 1. If S C R? is a closed set, then

—b
rch S = sup {7“ >0, Va,b €S, |a—b| <2r = ds(a,b) < 2rarcsin |a,2_|}7
-

where the sup over the empty set is 0.

If rchS < r then there is x in the medial axis with at least two points

a,b € S with d(z,S) = d(x,a) = d(z,b) =" < r and:

Medial axis

ja — b

21!

ja — b]

2r

la—b| <2r and ds(a,b) > 2r'arcsin > 2r arcsin




Proof of Theorem 1

Now the less trivial direction:

Theorem 1. If S C R? is a closed set, then

—b
rch S = sup {7“ >0, Va,b €S, |a—b| <2r = ds(a,b) < 2rarcsin |a2—|},
-

where the sup over the empty set is 0.

Lemma 6. Let S C R? be a closed set with reach v = rchS > 0. For any
a,b €S such that ||a — b|| < 2r one has:

la — b]]

ds(a,b) < 2rarcsin

2r
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la — o]

2r

ds(a,b) < 2rarcsin
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Proof of Theorem 1

Now the less trivial direction:

We use two results from H. Federer:

1) Tubular neighborhood:

If 0 <d(z,S) <rchS and pr(z) is the point in S closest to = then:

. Aot r—pr() \ __ o
VA € [0,rch S), p (p( )+>\||:c—pr(a:)||> pr(z)

Medial axis




Proof of Theorem 1

Now the less trivial direction:

We use two results from H. Federer:
2) Projection is Lipschitz:

For 4 < r = rchS the restriction of pr to the p-tubular neighbourhood
S* is Lipschitz with constant:

rchS
rchS — u

pl’ or(y) Medial axis
rchS

rch S

X y




Proof of Theorem 1

Now the less trivial direction:

Lemma 6. Let S C R? be a closed set with reach r = rchS > 0. For any
a,b € S such that ||a — b|| < 2r one has:

la — o]

2r

ds(a,b) < 2rarcsin

A first idea consists in applying the Lipschitz

constant on the projection of the straight line: Medial axis

rch S

S




Proof of Theorem 1

Now the less trivial direction:

Lemma 6. Let S C R? be a closed set with reach r = rchS > 0. For any
a,b € S such that ||a — b|| < 2r one has:

la — o]

2r

ds(a,b) < 2rarcsin

A first idea consists in applying the Lipschitz
constant on the projection of the straight line:

Medial axis

Unfortunately, even if this bounds the

rch S

geodesic length, the bound is not tight.




Proof of Theorem 1

Now the less trivial direction:

Lemma 6. Let S C R? be a closed set with reach r = rchS > 0. For any
a,b € S such that ||a — b|| < 2r one has:

la — o]

2r

ds(a,b) < 2rarcsin

But this works : | |
Medial axis

Step 0
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Now the less trivial direction:

Lemma 6. Let S C R? be a closed set with reach r = rchS > 0. For any
a,b € S such that ||a — b|| < 2r one has:

la — o]

2r

ds(a,b) < 2rarcsin

But this works : | |
Medial axis

Step 1 rch S

N —




Proof of Theorem 1

Now the less trivial direction:

Lemma 6. Let S C R? be a closed set with reach r = rchS > 0. For any
a,b € S such that ||a — b|| < 2r one has:

la — o]

2r

ds(a,b) < 2rarcsin

But this works :

Medial axis

Step 2 rch S

e
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Proof of Theorem 1

Now the less trivial direction:

Lemma 5. Let S C R? be a closed set with reach r = rchS > 0. Fora,be S

such that § = W'é;b” <r andm = “Ter one has:

lms(m) —ml| < p

with:

pzr—\/r2—52

Medial a

Figure 1 On the left the projection ws(m) is contained in the disk of center m and radius p.
The notation used in the proof of Lemma 3 is also added. From the right figure it is easy to deduce

that p =r — V/r2 — 2.

L — ——




Proof of Theorem 1

Now the less trivial direction:

Lemma 6. Let S C R? be a closed set with reach r = rchS > 0. For any
a,b € S such that ||a — b|| < 2r one has:

la — o]

2r

ds(a,b) < 2rarcsin

2t 1

> 16i((k+1)/2") — ds(k/2")]
k=0

length(¢;)

2t 1

Z [6i((k+1)/2°) = di(k/2")
k=0

IA

~ ~ —b
= length(¢;) < length(C; ;) = 2r arcsin |a2 | a % b
’ T

my/o
%o /




Proof of Theorem 1

Now the less trivial direction:

Lemma 6. Let S C R? be a closed set with reach r = rchS > 0. For any
a,b € S such that ||a — b|| < 2r one has:

la — o]

r

ds(a,b) < 2rarcsin

1 : : :
0i =5 o<, [@i((k+1)/2°) — ¢i(k/2°)]. zlig)lo 0; = 0.
rch S rch S la — b

length(7ws o ¢;) < hS —5 length(¢p;) < hS —5. 2r arcsin 5

my/9
) /




Embedded manifolds with positive reach

If M is a CY! compact manifold embedded in R then rch M > 0

If M is a manifold embedded in R? with rch M > 0 then M is C'!



Reach and curvature

If M is a C? manifold embedded in R?, and
damental form at point p € M, then:

» denotes its second fun-

Ll = sup  [[Ip(u,v)[| < sup ||
full=llv]=1 wll=1

(w, w)[| < ——
PR = T M

» Lemma 9. Let v(t) be a geodesic parametrized according to arc length on M C R?, then

4| < 1/rch(M), where we use Newton’s notation, that is we write % for the second derivative

of v with respect to t.




Reach and curvature

If M is a C? manifold embedded in R?, and » denotes its second fun-
damental form at point p € M, then:

1
IIL,|| = sup ||I,(u,v)|| < sup [T, (w,w)| <
lull=[lv]|=1 Jwl||=1 rch M

» Lemma 9. Let v(t) be a geodesic parametrized according to arc length on M C R?, then
4| < 1/rch(M), where we use Newton’s notation, that is we write % for the second derivative
of v with respect to t.

p(wvw) — p(ﬁwaﬁw) = Vi, Yw — Vi, Yw = @‘yw;yw — 0 =Y




Tangent variation on Manifolds

If M is a C? manifold embedded in R?, then:

» Lemma 11. Let p,q € M, then

dm(p, q) L 6
L( Ty M, T, M) < , emma 6.
( p q ) I‘Ch(./\/l) | ”a B b”

b) <2
/ ds(a,b) < 2rarcsin >

- L(TpM, TyM) p—q
< .
Sm( 2 ) = 2rch(M)




Tangent variation on Manifolds

» Lemma 11. Let p,qg € M, then

dm(p, q)
rch(M)

L(TyM, T,M) <

By definition:

/(TyM, TyM f /
(TpM, TyM) = ugaﬂgwiuv

And therefore if daq(p,q) =1 and ~ is a geodesic parametrized by arc length
such that v(0) = p and y(l) = g,

if t — wu(t) is the parallel transport of a unit vector u = u(0) along ~
then:

(T, M, T,M) < sup  Zu(0 /—dt

uelp, M




Tangent variation on Manifolds

» Lemma 11. Let p,qg € M, then

dm(p, q)
rch(M)

L(TyM, TyM) <

if t — wu(t) is the parallel transport of a unit vector u = u(0) along ~
then:

(T, M, T,M) < sup  Zu(0 /—dt

uelp M

Fr Vau(t) = I0, ) (7, u(t)) + Viu(t) = I, (¥, u(t))



Tangent variation on Manifolds

» Lemma 11. Let p,qg € M, then

dm(p, q)

ATM, T, M) < S50

if t — wu(t) is the parallel transport of a unit vector u = u(0) along ~
then:

(T, M, T,M) < sup  Zu(0 /—dt

uelp M




A pictorial proof




Thank you



Medial Axis and Reach

Medial Axis

Medial axis of an open set O:
« set of points in O who have at least two closest points
on the boundary of O »

Medial axis of a closed set C
= Medial axis of complement of C:
« set of points who have at least two closest points in C »

Reach of a closed set C
« infimum of distances between C and its medial axis»




