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2

Non-imaging optics
Goal: build optical components (mirrors or lenses) given

I a light source distribution

I a prescribed target distribution

Applications:

I Hydroponic agriculture

I Public lighting

I Car beams

I Caustic design
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Non-imaging problems

I Source can be collimated or punctual

I Target can be at

I infinity: directions in S2 → Far-Field

I finite distance: points in R3 → Near-Field

I Source can be collimated or punctual
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Non-imaging problems

I Source is a probability density ρ on X ⊂ R3

I Target is a discrete measure σ =
∑N
i=1 σiδyi supported on Y ⊂ R3

Semi-discrete setting:
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Outline
Part 1: General framework

Part 2: Damped Newton algorithm

I Setting 1: Collimated Source Mirror

I Setting 2: Collimated Source Lens

I Setting 3: Point Source Mirror

I Setting 4: Point Source Lens

I Description

I Convergence analysis

I Numerical results
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General framework
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Discretization of optimal transport

The different settings
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Setting 1: Collimated Source Mirror

Setting: X = R2 × {0} and Y ⊆ S2−

(Convex) parametrization of R:

Rψ : x ∈ R2 7→ (x, max
1≤i≤N

〈x|pi〉 − ψi)

where

I pi ∈ R2 = slope of the plane
that reflects the ray (0, 0, 1)
towards yi,

I ψi ∈ R its elevation
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Setting 1: Collimated Source Mirror

Visibility cell of yi: Vi(ψ) = {x ∈ R2 × {0} | x reflected towards direction yi}

I We set Gi(ψ) =
∫
Vi(ψ)

ρ(x)dx and G(ψ) = (Gi(ψ))1≤i≤N

Collimated Source Mirror problem

Find ψ ∈ RN such that G(ψ) = σ
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Setting 1: Collimated Source Mirror

Computation of Vi(ψ)

We recall Rψ(x) = (x,maxi〈x|pi〉 − ψi) and we have

Vi(ψ) = {x ∈ R2 | ∀j,−〈x|pi〉+ ψi ≤ −〈x|pj〉+ ψj}
= {x ∈ R2 | ∀j, c(x, yi) + ψi ≤ c(x, yj) + ψj}
=: Lagi(ψ) for c(x, y) = −〈x|y〉

and

Vi(ψ) = (R2 × {0}) ∩ Powi(P )

where pi =
pR2 (yi−ez)
〈yi−ez|ez〉 and ωi = 2ψi − ‖pi‖2
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Setting 1: Collimated Source Mirror

Computation of Vi(ψ)

We recall Rψ(x) = (x,maxi〈x|pi〉 − ψi) and we have

Vi(ψ) = {x ∈ R2 | ∀j,−〈x|pi〉+ ψi ≤ −〈x|pj〉+ ψj}
= {x ∈ R2 | ∀j, c(x, yi) + ψi ≤ c(x, yj) + ψj}
=: Lagi(ψ) for c(x, y) = −〈x|y〉

and

Vi(ψ) = (R2 × {0}) ∩ Powi(P )

where pi =
pR2 (yi−ez)
〈yi−ez|ez〉 and ωi = 2ψi − ‖pi‖2

Remark: concave parametrization

Rψ(x) = (x,mini〈x|pi〉+ ψi) and one can replace pi by its opposite
in the previous expressions
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Optimal transport and Laguerre Diagrams

Setting 2: Collimated Source Lens

Setting: X = R2 × {0}, Y ⊆ S2+ and κ = ratio of the refractive indices



8 - 2

Optimal transport and Laguerre Diagrams

Setting 2: Collimated Source Lens

Setting: X = R2 × {0}, Y ⊆ S2+ and κ = ratio of the refractive indices

Convex parametrization

Rψ(x) = (x, max
1≤i≤N

〈x|pi〉 − ψi)

and

Vi(ψ) = {x ∈ R2 × {0} | x refracted towards yi}
=: Lagi(ψ) for c(x, yi) = −〈x|pi〉

Vi(ψ) = (R2 × {0}) ∩ Powi(P )

where pi = −
pR2 (yi−κez)
〈yi−κez|ez〉 and ωi = 2ψi − ‖pi‖2
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9 - 1

Optimal transport as Concave Maximization

Setting 3: Point Source Mirror

Setting: X = S2 and Y ⊆ S2−
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Optimal transport as Concave Maximization

Setting 3: Point Source Mirror

Setting: X = S2 and Y ⊆ S2−

Parametrization: intersection of
confocal paraboloids =⇒ convex

Rψ : x ∈ S2 7→ max
1≤i≤N

ψi
1−〈x|yi〉

where ψi is the focal distance of the
i-th paraboloid, and we have

Vi(ψ) = S2 ∩ Powi(P )
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Optimal transport as Concave Maximization

Setting 3: Point Source Mirror

Setting: X = S2 and Y ⊆ S2−

Parametrization: intersection of
confocal paraboloids =⇒ convex

Rψ : x ∈ S2 7→ max
1≤i≤N

ψi
1−〈x|yi〉

where ψi is the focal distance of the
i-th paraboloid, and we have

Vi(ψ) = S2 ∩ Powi(P )

Remark: union of confocal paraboloids
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Optimal transport as Concave Maximization

Setting 4: Point Source Lens

Setting: X = S2, Y ⊆ S2+ and κ < 1

Parametrization: intersection of
confocal ellipsoids =⇒ convex

Rψ : x ∈ S2 7→ max
1≤i≤N

ψi
1−κ〈x|yi〉

where ψi is one of the focal distances
of the i-th ellipsoid, and

Vi(ψ) = S2 ∩ Powi(P )

Remark: union of confocal elipsoids



11 - 1

Optimal transport as Concave Maximization

Common structure
Semi discrete Monge Ampère equation

Find ψ ∈ RN such that G(ψ) = σ
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Optimal transport as Concave Maximization

Common structure
Semi discrete Monge Ampère equation

Find ψ ∈ RN such that G(ψ) = σ

Efficient evaluation of G

I Visibility cells: Vi(ψ) = X ∩ Powi(P )

I Collimated: X = R2 × {0}
I Punctual: X = S2
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Optimal transport as Concave Maximization

Common structure
Semi discrete Monge Ampère equation

Find ψ ∈ RN such that G(ψ) = σ

Efficient evaluation of G

Damped Newton algorithm: convergence results known for

I Visibility cells: Vi(ψ) = X ∩ Powi(P )

I Collimated: X = R2 × {0}
I Punctual: X = S2

I Quadratic cost in the plane [Mirebeau, 2015]

I Many cost functions (MTW) [Kitagawa et al., 2016]
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Optimal transport as Concave Maximization

Common structure
Semi discrete Monge Ampère equation

Find ψ ∈ RN such that G(ψ) = σ

Efficient evaluation of G

Damped Newton algorithm: convergence results known for

I Visibility cells: Vi(ψ) = X ∩ Powi(P )

I Collimated: X = R2 × {0}
I Punctual: X = S2

I Quadratic cost in the plane [Mirebeau, 2015]

I Many cost functions (MTW) [Kitagawa et al., 2016]

=⇒ We will use the same algorithm
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Generic algorithm
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Damped Newton’s Algorithm

Overview
Algorithm: Mirror / lens construction

Input A light source intensity function ρin
A target light intensity function σin
A tolerance η > 0

Output A triangulation RT of a mirror or lens R
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Damped Newton’s Algorithm

Overview
Algorithm: Mirror / lens construction

Input A light source intensity function ρin
A target light intensity function σin
A tolerance η > 0

Output A triangulation RT of a mirror or lens R
Step 1 Initialization

T, ρ← DISCRETIZATION SOURCE(ρin)

Y, σ ← DISCRETIZATION TARGET(σin)
ψ0 ← INITIAL WEIGHTS(Y )
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Damped Newton’s Algorithm

Overview
Algorithm: Mirror / lens construction

Input A light source intensity function ρin
A target light intensity function σin
A tolerance η > 0

Output A triangulation RT of a mirror or lens R
Step 1 Initialization

T, ρ← DISCRETIZATION SOURCE(ρin)

Y, σ ← DISCRETIZATION TARGET(σin)
ψ0 ← INITIAL WEIGHTS(Y )

Step 2 Solve G(ψ) = σ

ψ ← DAMPED NEWTON(T, ρ, Y, σ, ψ0, η)

Step 3 Construct a triangulation RT of R
RT ← SURFACE CONSTRUCTION(ψ,Rψ)
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Optimal transport as Concave Maximization

Step 1: Initialization
Discretization:

I ρin is discretized by a piecewise affine function ρ on a triangulation T

I σin is discretized by a discrete measure σ on a 3D point cloud Y
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Optimal transport as Concave Maximization

Step 1: Initialization
Discretization:

I ρin is discretized by a piecewise affine function ρ on a triangulation T

I σin is discretized by a discrete measure σ on a 3D point cloud Y

Initial weights: we must ensure that at each step ∀i, Gi(ψ) > 0

∂Gi
∂ψj

(ψ) ∝
∫
Vi,j(ψ)

ρ(x)dx
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Optimal transport as Concave Maximization

Step 1: Initialization
Discretization:

I ρin is discretized by a piecewise affine function ρ on a triangulation T

I σin is discretized by a discrete measure σ on a 3D point cloud Y

Initial weights: we must ensure that at each step ∀i, Gi(ψ) > 0

∂Gi
∂ψj

(ψ) ∝
∫
Vi,j(ψ)

ρ(x)dx

=⇒ ∂Gi
∂ψj

is not continuous!
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Optimal transport as Concave Maximization

Step 1: Initialization
Discretization:

I ρin is discretized by a piecewise affine function ρ on a triangulation T

I σin is discretized by a discrete measure σ on a 3D point cloud Y

Initial weights: we must ensure that at each step ∀i, Gi(ψ) > 0

I simple settings =⇒ easy choices can be made

I more complex configurations like pillows =⇒ other strategies

At the beginning:
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non-(Smoothness) of Kantorovich’s functional

Step 2: Damped Newton algorithm
Algorithm: Mirror / lens construction

Input A function ρ : T → R+

A discrete measure σ = (σi)1≤i≤N supported on Y

An initial vector of weights ψ0

A tolerance η > 0

Output A vector ψ ∈ RN

Step 1 Transformation into an optimal transport problem

If X = R2 × {0}, then ψ̃0 = ψ0 and G̃i = Gi

If X = S2, then ψ̃0 = ln(ψ0) and G̃i = Gi ◦ exp
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non-(Smoothness) of Kantorovich’s functional

Step 2: Damped Newton algorithm
Algorithm: Mirror / lens construction

Solve G̃(ψ̃) = σStep 2

ε0 = min[miniGi(ψ
0),mini σi]Initialization

k = 0

While ‖G̃(ψ̃k)− σ‖∞ > η

- Compute dk = −DG̃(ψ̃k)+(G̃(ψ̃k)− σ)
- Determine the minimum ` ∈ N such that
ψ̃k,l := ψ̃k + 2−`dk satisfies:{
mini G̃i(ψ̃

k,l) ≥ ε0
‖G̃(ψ̃k,l)− σ‖∞ ≤ (1− 2−(`+1)‖G̃(ψ̃k)− σ‖∞

- Set ψ̃k+1 = ψ̃k + 2−`dk and k ← k + 1

Return ψ := ψ̃k if X = R2 × {0} or

ψ := exp(ψ̃k) if X = S2
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non-(Smoothness) of Kantorovich’s functional

Step 2: Damped Newton algorithm
Computation of DG: automatic differentiation =⇒ genericity
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non-(Smoothness) of Kantorovich’s functional

Step 2: Damped Newton algorithm
Computation of DG: automatic differentiation =⇒ genericity

Theorem ([Mérigot, M., Thibert, 2017]

Assume ρ is a regular simplicial measure and that the points p1, . . . , pN are in
generic position. Then:

I G̃ is of class C1 on RN ,

I G̃ is stricty monotone in the sense

∀ψ ∈ K+, ∀v ∈ {cst}⊥ \ {0}, 〈DG̃(ψ)v|v〉 < 0

=⇒ the proposed damped Newton algorithm converges in a finite number of
steps and

‖G̃(ψk+1)− σ‖∞ ≤
(
1− τ∗

2

)
‖G̃(ψk)− σ‖∞

where τ∗ ∈]0, 1] depends on ρ, σ and ε0.
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non-(Smoothness) of Kantorovich’s functional

Step 2: Damped Newton algorithm
Computation of DG: automatic differentiation =⇒ genericity

I Collimated settings: mirror and lens (convex and concave)

Convergence known for:

I Punctual settings: mirror (intersection), lens (union)
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(Strong concavity) of Kantorovich’s functional

Step 3: Surface construction
RT is the lifted triangulation dual to the Visibility diagram

Collimated Source Mirror (convex)
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Numerical results
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Loeper’s reformulation of Ma-Trudinger-Wang

General framework
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Loeper’s reformulation of Ma-Trudinger-Wang

General framework



19

Summary and comments

Collimated source
Target / Mean curvature / Forward simulation

Convex Collimated Source Mirror
problem with a uniform light source

Target / Mean curvature / Forward simulation

Concave Collimated Source Lens
problem with a uniform light source
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Summary and comments

Punctual source
Target / Mean curvature / Forward simulation

Concave Point Source Mirror
problem with a uniform light source

Target / Mean curvature / Forward simulation

Point Source Lens problem with a
uniform light source
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Numerics: vanishing density

Non uniform source

Source RT RT for a uniform source
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Pillows
Goal: decompose the optical component into several smaller pillows
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Pillows
Goal: decompose the optical component into several smaller pillows

Problem: support of the pillow is small =⇒ choice of the initial weights

Solution: interpolation between two source densities
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Pillows
Interpolation: pillow = left part of the plane

Pillow P

Vi(ψ) ∩ P = ∅
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Pillows
Interpolation: pillow = left part of the plane
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Pillows
Interpolation: pillow = left part of the plane
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Pillows
Example: lens made of 9 pillows, without and with an obstacle
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Pillows

Without an obstacle
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Pillows

With an obstacle
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Numerics: implementation details

Demo
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Numerics: implementation details

Conclusion & Perspectives
We saw

I a general framework to solve 8 different optical component design probems,

I and a generic and efficient algorithm able to solve them.

Code: OT between a density supported on a triangulated surface and
a discrete measure on a 3D point cloud for the quadratic cost
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Perspectives:

I Near-Field: optimal transport replaced by a prescribed Jacobian

I extended sources

I initialization strategies
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Numerics: implementation details

Pillows (bis)

=⇒ we use an iterative method to simulate a Near-Field target

Image alignment: we can not use the Far-Field assumption


