Geometric methods for the conception of optical components in non-imaging optics

Jocelyn Meyron with Quentin Mérigot and Boris Thibert

Université de Grenoble-Alpes, Université Paris-Sud

JGA 2017 - December 15th, 2017

Non-imaging optics

Goal: build optical components (mirrors or lenses) given

- a light source distribution
- a prescribed target distribution

Applications:

- Hydroponic agriculture
- Public lighting
- Car beams
- Caustic design

Non-imaging problems

Source can be collimated or punctual

► Target can be at

▶ infinity: directions in $\mathbb{S}^2 \to \mathbf{Far}$ -Field

Non-imaging problems

Semi-discrete setting:

- ▶ Source is a probability density ρ on $X \subset \mathbb{R}^3$
- Target is a *discrete* measure $\sigma = \sum_{i=1}^{N} \sigma_i \delta_{y_i}$ supported on $Y \subset \mathbb{R}^3$

Outline

Part 1: General framework

- Setting 1: Collimated Source Mirror
- Setting 2: Collimated Source Lens
- Setting 3: Point Source Mirror
- Setting 4: Point Source Lens

Part 2: Damped Newton algorithm

- Description
- Convergence analysis
- Numerical results

General framework

The different settings

Setting: $X = \mathbb{R}^2 \times \{0\}$ and $Y \subseteq \mathbb{S}^2_-$

(Convex) parametrization of \mathcal{R} :

$$\mathcal{R}_{\psi} : x \in \mathbb{R}^2 \mapsto (x, \max_{1 \le i \le N} \langle x | p_i \rangle - \psi_i)$$

where

- ▶ $p_i \in \mathbb{R}^2$ = slope of the plane that reflects the ray (0, 0, 1)towards y_i ,
- $\psi_i \in \mathbb{R}$ its elevation

Visibility cell of y_i : $V_i(\psi) = \{x \in \mathbb{R}^2 \times \{0\} \mid x \text{ reflected towards direction } y_i\}$

► We set $G_i(\psi) = \int_{V_i(\psi)} \rho(x) dx$ and $G(\psi) = (G_i(\psi))_{1 \le i \le N}$

Collimated Source Mirror problem

Find
$$\psi \in \mathbb{R}^N$$
 such that $G(\psi) = \sigma$

Computation of $V_i(\psi)$

We recall $\mathcal{R}_{\psi}(x) = (x, \max_i \langle x | p_i \rangle - \psi_i)$ and we have $V_i(\psi) = \{x \in \mathbb{R}^2 \mid \forall j, -\langle x | p_i \rangle + \psi_i \leq -\langle x | p_j \rangle + \psi_j\}$ $= \{x \in \mathbb{R}^2 \mid \forall j, c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j\}$ $=: \operatorname{Lag}_i(\psi) \text{ for } c(x, y) = -\langle x | y \rangle$

and

$$V_i(\psi) = (\mathbb{R}^2 \times \{0\}) \cap \operatorname{Pow}_i(P)$$

where
$$p_i = rac{p_{\mathbb{R}^2}(y_i - e_z)}{\langle y_i - e_z | e_z \rangle}$$
 and $\omega_i = 2\psi_i - \|p_i\|^2$

Computation of $V_i(\psi)$

We recall $\mathcal{R}_{\psi}(x) = (x, \max_i \langle x | p_i \rangle - \psi_i)$ and we have $V_i(\psi) = \{x \in \mathbb{R}^2 \mid \forall j, -\langle x | p_i \rangle + \psi_i \leq -\langle x | p_j \rangle + \psi_j\}$ $= \{x \in \mathbb{R}^2 \mid \forall j, c(x, y_i) + \psi_i \leq c(x, y_j) + \psi_j\}$ $=: \operatorname{Lag}_i(\psi) \text{ for } c(x, y) = -\langle x | y \rangle$

and

7 - 4

$$V_i(\psi) = (\mathbb{R}^2 \times \{0\}) \cap \operatorname{Pow}_i(P)$$

where
$$p_i = \frac{p_{\mathbb{R}^2}(y_i - e_z)}{\langle y_i - e_z | e_z \rangle}$$
 and $\omega_i = 2\psi_i - \|p_i\|^2$

Remark: concave parametrization

 $\mathcal{R}_{\psi}(x) = (x, \min_i \langle x | p_i \rangle + \psi_i)$ and one can replace p_i by its opposite in the previous expressions

Setting 2: Collimated Source Lens

Setting: $X = \mathbb{R}^2 \times \{0\}$, $Y \subseteq \mathbb{S}^2_+$ and $\kappa =$ ratio of the refractive indices

8 - 1

Setting 2: Collimated Source Lens

Setting: $X = \mathbb{R}^2 \times \{0\}$, $Y \subseteq \mathbb{S}^2_+$ and $\kappa =$ ratio of the refractive indices

Convex parametrization

$$\mathcal{R}_{\psi}(x) = (x, \max_{1 \le i \le N} \langle x | p_i \rangle - \psi_i)$$

and

$$V_i(\psi) = \{x \in \mathbb{R}^2 \times \{0\} \mid x \text{ refracted towards } y_i\}$$

=: Lag_i(\psi) for c(x, y_i) = -\langle x | p_i \rangle

$$V_i(\psi) = (\mathbb{R}^2 \times \{0\}) \cap \operatorname{Pow}_i(P)$$

where
$$p_i = -\frac{p_{\mathbb{R}^2}(y_i - \kappa e_z)}{\langle y_i - \kappa e_z | e_z \rangle}$$
 and $\omega_i = 2\psi_i - \|p_i\|^2$

Collimated light source $\mathbb{R}^2 \times \{0\}$

Setting 2: Collimated Source Lens

Setting: $X = \mathbb{R}^2 \times \{0\}$, $Y \subseteq \mathbb{S}^2_+$ and $\kappa =$ ratio of the refractive indices

Convex parametrization

$$\mathcal{R}_{\psi}(x) = (x, \max_{1 \le i \le N} \langle x | p_i \rangle - \psi_i)$$

and

$$V_i(\psi) = \{x \in \mathbb{R}^2 \times \{0\} \mid x \text{ refracted towards } y_i\}$$

=: $\operatorname{Lag}_i(\psi)$ for $c(x, y_i) = -\langle x | p_i \rangle$

$$V_i(\psi) = (\mathbb{R}^2 \times \{0\}) \cap \operatorname{Pow}_i(P)$$

where
$$p_i = -\frac{p_{\mathbb{R}^2}(y_i - \kappa e_z)}{\langle y_i - \kappa e_z | e_z \rangle}$$
 and $\omega_i = 2\psi_i - ||p_i||^2$
Remark: concave parametrization
 $\mathcal{R}_{\psi}(x) = (x, \min_i \langle x | p_i \rangle + \psi_i)$

8 - 3

Setting 3: Point Source Mirror

Setting: $X = \mathbb{S}^2$ and $Y \subseteq \mathbb{S}^2_-$

Setting 3: Point Source Mirror

Setting: $X = \mathbb{S}^2$ and $Y \subseteq \mathbb{S}^2_-$

Parametrization: intersection of confocal paraboloids \implies convex

$$\mathcal{R}_{\psi} : x \in \mathbb{S}^2 \mapsto \max_{1 \le i \le N} \frac{\psi_i}{1 - \langle x | y_i \rangle}$$

where ψ_i is the focal distance of the i-th paraboloid, and we have

$$V_i(\psi) = \mathbb{S}^2 \cap \operatorname{Pow}_i(P)$$

Setting 3: Point Source Mirror

Setting: $X = \mathbb{S}^2$ and $Y \subseteq \mathbb{S}^2_-$

Parametrization: intersection of confocal paraboloids \implies convex

$$\mathcal{R}_{\psi} : x \in \mathbb{S}^2 \mapsto \max_{1 \le i \le N} \frac{\psi_i}{1 - \langle x | y_i \rangle}$$

where ψ_i is the focal distance of the i-th paraboloid, and we have

$$V_i(\psi) = \mathbb{S}^2 \cap \operatorname{Pow}_i(P)$$

Remark: union of confocal paraboloids

Setting 4: Point Source Lens

Setting: $X = \mathbb{S}^2$, $Y \subseteq \mathbb{S}^2_+$ and $\kappa < 1$

Parametrization: intersection of confocal ellipsoids \implies convex

$$\mathcal{R}_{\psi} : x \in \mathbb{S}^2 \mapsto \max_{1 \le i \le N} \frac{\psi_i}{1 - \kappa \langle x | y_i \rangle}$$

where ψ_i is one of the focal distances of the i-th ellipsoid, and

$$V_i(\psi) = \mathbb{S}^2 \cap \operatorname{Pow}_i(P)$$

Remark: union of confocal elipsoids

Semi discrete Monge Ampère equation

Find $\psi \in \mathbb{R}^N$ such that $G(\psi) = \sigma$

Semi discrete Monge Ampère equation

Find $\psi \in \mathbb{R}^N$ such that $G(\psi) = \sigma$

Efficient evaluation of G

- ► Visibility cells: $V_i(\psi) = X \cap Pow_i(P)$
- ► Collimated: $X = \mathbb{R}^2 \times \{0\}$

▶ Punctual:
$$X = \mathbb{S}^2$$

Semi discrete Monge Ampère equation

Find $\psi \in \mathbb{R}^N$ such that $G(\psi) = \sigma$

Efficient evaluation of G

► Visibility cells: $V_i(\psi) = X \cap Pow_i(P)$

• Collimated:
$$X = \mathbb{R}^2 \times \{0\}$$

• Punctual:
$$X = \mathbb{S}^2$$

Damped Newton algorithm: convergence results known for

- ▶ Quadratic cost in the plane [Mirebeau, 2015]
- Many cost functions (MTW) [Kitagawa et al., 2016]

Semi discrete Monge Ampère equation

Find $\psi \in \mathbb{R}^N$ such that $G(\psi) = \sigma$

Efficient evaluation of G

► Visibility cells: $V_i(\psi) = X \cap Pow_i(P)$

• Collimated:
$$X = \mathbb{R}^2 \times \{0\}$$

• Punctual:
$$X = \mathbb{S}^2$$

Damped Newton algorithm: convergence results known for

- ▶ Quadratic cost in the plane [Mirebeau, 2015]
- Many cost functions (MTW) [Kitagawa et al., 2016]
- \implies We will use the same algorithm

Generic algorithm

Algorithm: Mirror / lens construction

Input A light source intensity function ρ_{in} A target light intensity function σ_{in} A tolerance $\eta > 0$

Output A triangulation \mathcal{R}_T of a mirror or lens \mathcal{R}

Algorithm: Mirror / lens construction

- **Input** A light source intensity function ρ_{in} A target light intensity function σ_{in} A tolerance $\eta > 0$
- **Output** A triangulation \mathcal{R}_T of a mirror or lens \mathcal{R}
- Step 1 Initialization

$$\begin{split} T, \rho &\leftarrow \texttt{DISCRETIZATION_SOURCE}(\rho_{in}) \\ Y, \sigma &\leftarrow \texttt{DISCRETIZATION_TARGET}(\sigma_{in}) \\ \psi^0 &\leftarrow \texttt{INITIAL_WEIGHTS}(Y) \end{split}$$

Algorithm: Mirror / lens construction

- **Input** A light source intensity function ρ_{in} A target light intensity function σ_{in} A tolerance $\eta > 0$
- **Output** A triangulation \mathcal{R}_T of a mirror or lens \mathcal{R}
- Step 1 Initialization

 $T, \rho \leftarrow \text{DISCRETIZATION_SOURCE}(\rho_{in})$ $Y, \sigma \leftarrow \text{DISCRETIZATION_TARGET}(\sigma_{in})$ $\psi^{0} \leftarrow \text{INITIAL_WEIGHTS}(Y)$

Step 2 Solve $G(\psi) = \sigma$

 $\psi \leftarrow \texttt{DAMPED_NEWTON}(T, \rho, Y, \sigma, \psi^0, \eta)$

Algorithm: Mirror / lens construction

- **Input** A light source intensity function ρ_{in} A target light intensity function σ_{in} A tolerance $\eta > 0$
- **Output** A triangulation \mathcal{R}_T of a mirror or lens \mathcal{R}
- Step 1 Initialization

 $T, \rho \leftarrow \text{DISCRETIZATION_SOURCE}(\rho_{in})$ $Y, \sigma \leftarrow \text{DISCRETIZATION_TARGET}(\sigma_{in})$ $\psi^0 \leftarrow \text{INITIAL_WEIGHTS}(Y)$

Step 2 Solve $G(\psi) = \sigma$

 $\psi \leftarrow \texttt{DAMPED_NEWTON}(T, \rho, Y, \sigma, \psi^0, \eta)$

Step 3 Construct a triangulation \mathcal{R}_T of \mathcal{R} $\mathcal{R}_T \leftarrow \text{SURFACE}_\text{CONSTRUCTION}(\psi, \mathcal{R}_\psi)$

- $\blacktriangleright \rho_{in}$ is discretized by a piecewise affine function ρ on a triangulation T
- $\blacktriangleright \ \sigma_{in}$ is discretized by a discrete measure σ on a 3D point cloud Y

- $\blacktriangleright \ \rho_{in}$ is discretized by a piecewise affine function ρ on a triangulation T
- $\blacktriangleright \ \sigma_{in}$ is discretized by a discrete measure σ on a 3D point cloud Y

Initial weights: we must ensure that at each step $\forall i, G_i(\psi) > 0$

$$\frac{\partial G_i}{\partial \psi_j}(\psi) \propto \int_{V_{i,j}(\psi)} \rho(x) dx$$

- $\blacktriangleright \rho_{in}$ is discretized by a piecewise affine function ρ on a triangulation T
- $\blacktriangleright \ \sigma_{in}$ is discretized by a discrete measure σ on a 3D point cloud Y

Initial weights: we must ensure that at each step $\forall i, G_i(\psi) > 0$

$$\frac{\partial G_i}{\partial \psi_j}(\psi) \propto \int_{V_{i,j}(\psi)} \rho(x) dx$$

- \triangleright ρ_{in} is discretized by a piecewise affine function ρ on a *triangulation* T
- $\blacktriangleright \ \sigma_{in}$ is discretized by a discrete measure σ on a 3D point cloud Y

Initial weights: we must ensure that at each step $\forall i, G_i(\psi) > 0$

$$\frac{\partial G_i}{\partial \psi_j}(\psi) \propto \int_{V_{i,j}(\psi)} \rho(x) dx$$

 $\implies \frac{\partial G_i}{\partial \psi_j}$ is not continuous!

- $\blacktriangleright \rho_{in}$ is discretized by a piecewise affine function ρ on a triangulation T
- $\blacktriangleright \ \sigma_{in}$ is discretized by a discrete measure σ on a 3D point cloud Y

Initial weights: we must ensure that at each step $\forall i, G_i(\psi) > 0$ At the beginning:

- \blacktriangleright simple settings \implies easy choices can be made
- \blacktriangleright more complex configurations like *pillows* \implies other strategies

Algorithm: Mirror / lens construction

Input A function $\rho: T \to \mathbb{R}^+$ A discrete measure $\sigma = (\sigma_i)_{1 \le i \le N}$ supported on YAn initial vector of weights ψ^0 A tolerance $\eta > 0$

- **Output** A vector $\psi \in \mathbb{R}^N$
- **Step 1** Transformation into an optimal transport problem If $X = \mathbb{R}^2 \times \{0\}$, then $\tilde{\psi}^0 = \psi^0$ and $\tilde{G}_i = G_i$

If
$$X = \mathbb{S}^2$$
, then $\tilde{\psi}^0 = \ln(\psi^0)$ and $\tilde{G}_i = G_i \circ \exp(\psi^0)$

Algorithm: Mirror / lens construction **Step 2** Solve $\tilde{G}(\psi) = \sigma$ Initialization $\epsilon_0 = \min[\min_i G_i(\psi^0), \min_i \sigma_i]$ k = 0While $\|\tilde{G}(\tilde{\psi}^k) - \sigma\|_{\infty} > \eta$ - Compute $d_k = -D\tilde{G}(\tilde{\psi}^k)^+ (\tilde{G}(\tilde{\psi}^k) - \sigma)$ - Determine the minimum $\ell \in \mathbb{N}$ such that $\tilde{\psi}^{k,l} := \tilde{\psi}^k + 2^{-\ell} d_k$ satisfies: $\begin{cases} \min_{i} \tilde{G}_{i}(\tilde{\psi}^{k,l}) \geq \epsilon_{0} \\ \|\tilde{G}(\tilde{\psi}^{k,l}) - \sigma\|_{\infty} \leq (1 - 2^{-(\ell+1)}) \|\tilde{G}(\tilde{\psi}^{k}) - \sigma\|_{\infty} \end{cases}$ - Set $\tilde{\psi}^{k+1} = \tilde{\psi}^k + 2^{-\ell} d_k$ and $k \leftarrow k+1$ **Return** $\psi := \tilde{\psi}^k$ if $X = \mathbb{R}^2 \times \{0\}$ or $\psi := \exp(\tilde{\psi}^k)$ if $X = \mathbb{S}^2$

Computation of DG: automatic differentiation \implies genericity

Computation of DG: automatic differentiation \implies genericity

Theorem ([Mérigot, M., Thibert, 2017]

Assume ρ is a regular simplicial measure and that the points p_1, \ldots, p_N are in generic position. Then:

• \tilde{G} is of class \mathcal{C}^1 on \mathbb{R}^N ,

 \blacktriangleright \hat{G} is stricty monotone in the sense

$$\forall \psi \in K^+, \forall v \in \{cst\}^{\perp} \setminus \{0\}, \langle D\tilde{G}(\psi)v|v\rangle < 0$$

 \implies the proposed damped Newton algorithm converges in a finite number of steps and

$$\|\tilde{G}(\psi^{k+1}) - \sigma\|_{\infty} \le \left(1 - \frac{\tau^*}{2}\right) \|\tilde{G}(\psi^k) - \sigma\|_{\infty}$$

where $\tau^* \in]0,1]$ depends on ρ,σ and ϵ_0 .

Computation of DG: automatic differentiation \implies genericity

Convergence known for:

- Collimated settings: mirror and lens (convex and concave)
- Punctual settings: mirror (intersection), lens (union)

Step 3: Surface construction

\mathcal{R}_T is the *lifted* triangulation *dual* to the *Visibility* diagram

Collimated Source Mirror (convex)

Numerical results

General framework

18 - 1

General framework

18 - 2

Collimated source

Target / Mean curvature / Forward simulation

Target / Mean curvature / Forward simulation

Convex Collimated Source Mirror problem with a uniform light source

19

Concave Collimated Source Lens problem with a uniform light source

Punctual source

Target / Mean curvature / Forward simulation

Target / Mean curvature / Forward simulation

20 problem with a uniform light source

Non uniform source

Source

 \mathcal{R}_{T} for a uniform source

Goal: decompose the optical component into several smaller *pillows*

Goal: decompose the optical component into several smaller *pillows*

Problem: support of the pillow is *small* \implies choice of the initial weights **Solution**: interpolation between two source densities

22 - 3

Interpolation: pillow = left part of the plane

22 - 4

Interpolation: pillow = left part of the plane

Example: lens made of 9 pillows, without and with an obstacle

22 - 6

Without an obstacle

With an obstacle

Demo

We saw

- ► a *general framework* to solve 8 different optical component design probems,
- and a generic and efficient algorithm able to solve them.

Code: OT between a density supported on a triangulated surface and a discrete measure on a 3D point cloud for the quadratic cost

We saw

- ► a *general framework* to solve 8 different optical component design probems,
- ► and a *generic* and *efficient* algorithm able to solve them.

Code: OT between a density supported on a triangulated surface and a discrete measure on a 3D point cloud for the quadratic cost

Perspectives:

- ► Near-Field: optimal transport replaced by a *prescribed Jacobian*
- extended sources
- initialization strategies

We saw

- ► a *general framework* to solve 8 different optical component design probems,
- ► and a *generic* and *efficient* algorithm able to solve them.

Code: OT between a density supported on a triangulated surface and a discrete measure on a 3D point cloud for the quadratic cost

Perspectives:

- ► Near-Field: optimal transport replaced by a *prescribed Jacobian*
- extended sources
- initialization strategies

Thank you for you attention.

We saw

- ► a *general framework* to solve 8 different optical component design probems,
- ► and a *generic* and *efficient* algorithm able to solve them.

Code: OT between a density supported on a triangulated surface and a discrete measure on a 3D point cloud for the quadratic cost

Perspectives:

- ► Near-Field: optimal transport replaced by a *prescribed Jacobian*
- extended sources
- initialization strategies

Thank you for you attention.

Pillows (bis)

 \implies we use an iterative method to simulate a *Near-Field* target