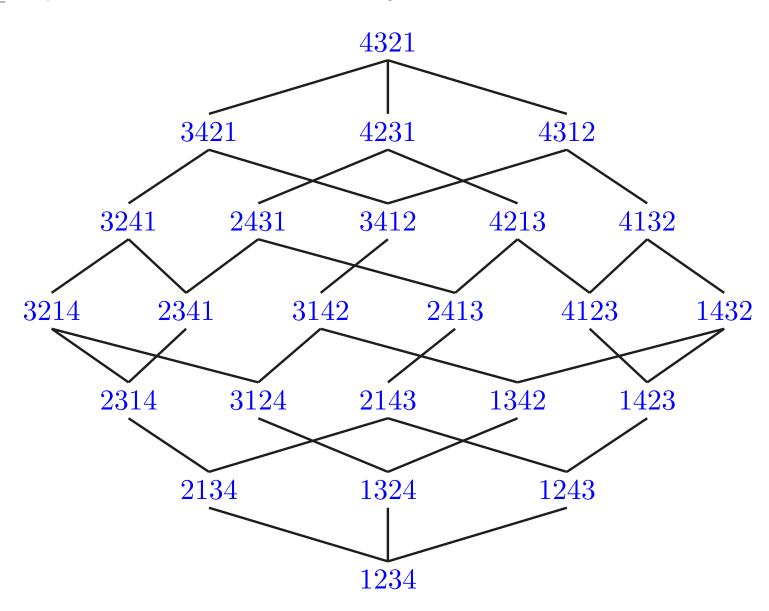


WEAK ORDER & PERMUTAHEDRON

WEAK ORDER

inversions of $\sigma \in \mathfrak{S}_n = \text{pair } (\sigma_i, \sigma_j)$ such that i < j and $\sigma_i > \sigma_j$ weak order = permutations of \mathfrak{S}_n ordered by inclusion of inversion sets



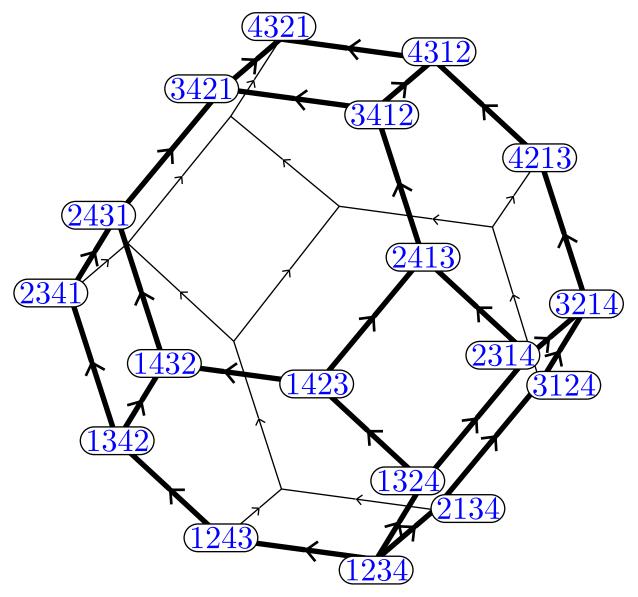
PERMUTAHEDRON

Permutohedron Perm $(n) = \text{conv} \{ (\sigma(1), \dots, \sigma(n)) \in \mathbb{R}^n \mid \sigma \in \mathfrak{S}_n \}$



PERMUTAHEDRON

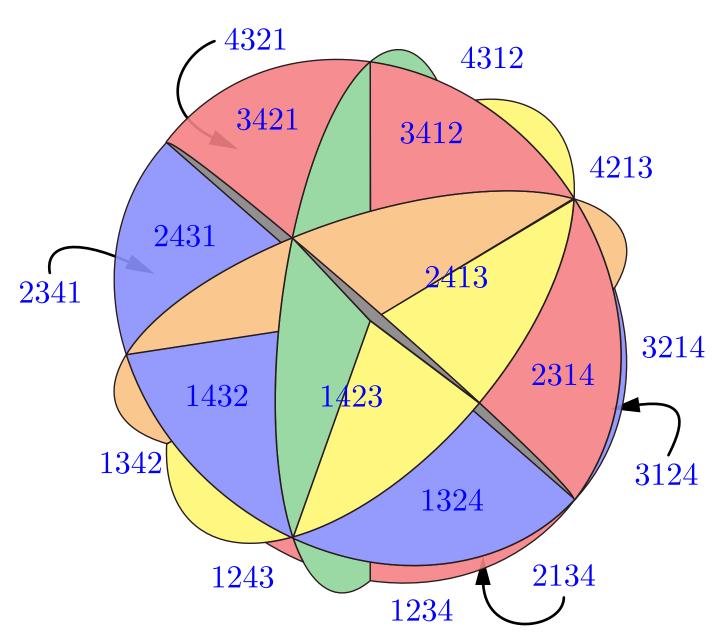
Permutohedron Perm $(n) = \text{conv} \{ (\sigma(1), \dots, \sigma(n)) \in \mathbb{R}^n \mid \sigma \in \mathfrak{S}_n \}$



weak order = orientation of the graph of Perm(n)

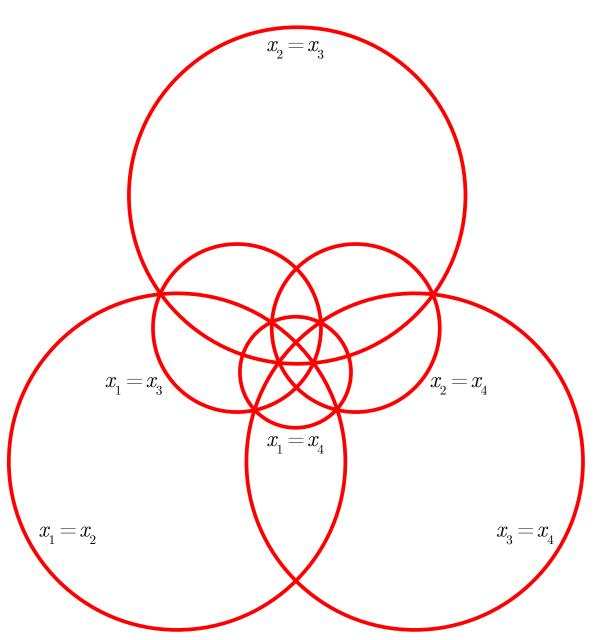
COXETER ARRANGEMENT

 $\underline{\mathsf{Coxeter\ fan}} = \mathsf{fan\ defined\ by\ the\ hyperplane\ arrangement\ } \{\mathbf{x} \in \mathbb{R}^n \mid x_i = x_j\}_{1 \leq i < j \leq n}$



COXETER ARRANGEMENT

 $\underline{\mathsf{Coxeter\ fan}} = \mathsf{fan\ defined\ by\ the\ hyperplane\ arrangement\ } \{\mathbf{x} \in \mathbb{R}^n \mid x_i = x_j\}_{1 \leq i < j \leq n}$



LATTICE QUOTIENTS

Reading, Lattice congruences, fans and Hopf algebras ('05) Reading, Finite Coxeter groups and the weak order ('16) Reading, Lattice theory of the poset of regions ('16)

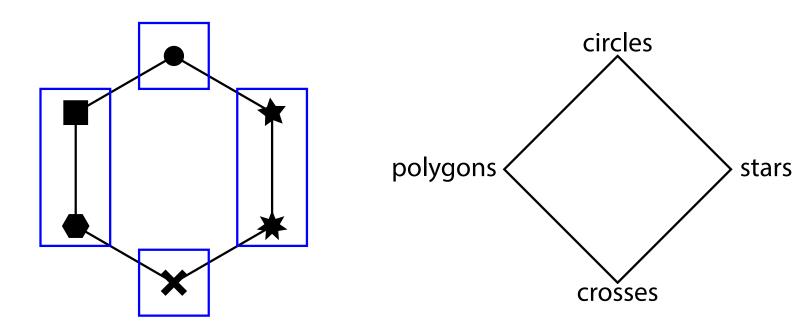
LATTICE CONGRUENCES

lattice congruence = equiv. rel. \equiv on L which respects meets and joins

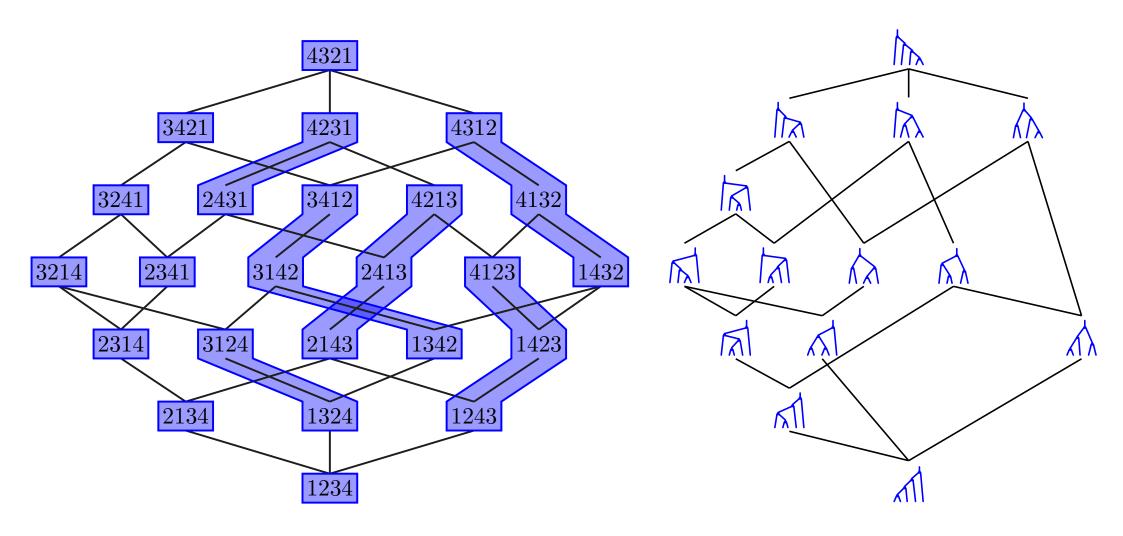
$$x \equiv x'$$
 and $y \equiv y'$ \Longrightarrow $x \land y \equiv x' \land y'$ and $x \lor y \equiv x' \lor y'$

lattice quotient of $L/\equiv =$ lattice on equiv. classes of L under \equiv where

- $\bullet X \leq Y \iff \exists x \in X, \ y \in Y, \quad x \leq y$
- $ullet X \wedge Y = \text{equiv. class of } x \wedge y \text{ for any } x \in X \text{ and } y \in Y$
- $ullet X \lor Y = \text{equiv. class of } x \lor y \text{ for any } x \in X \text{ and } y \in Y$



EXM: TAMARI LATTICE

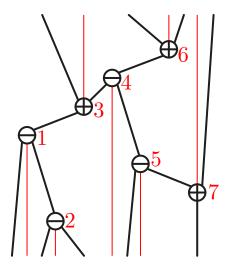


Tamari lattice = lattice quotient of the weak order by the relation "same binary tree"

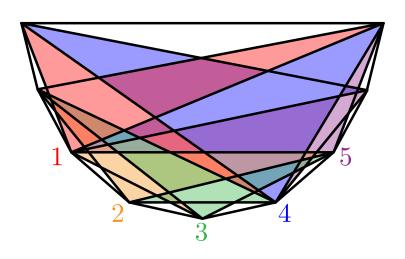
Catalan combinatorics — Associahedron — Non-crossing partitions — ...

RELEVANT LATTICE QUOTIENTS OF THE WEAK ORDER

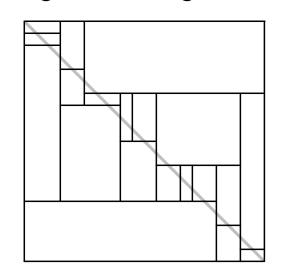
Cambrian trees



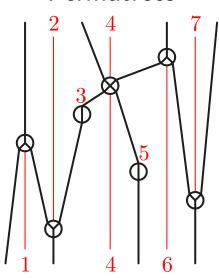
Acyclic *k*-triangulations



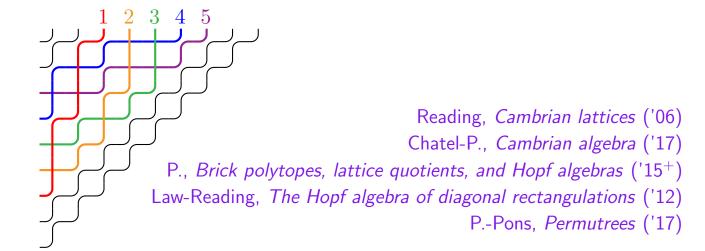
diagonal rectangulations



Permutrees



Pipe dreams

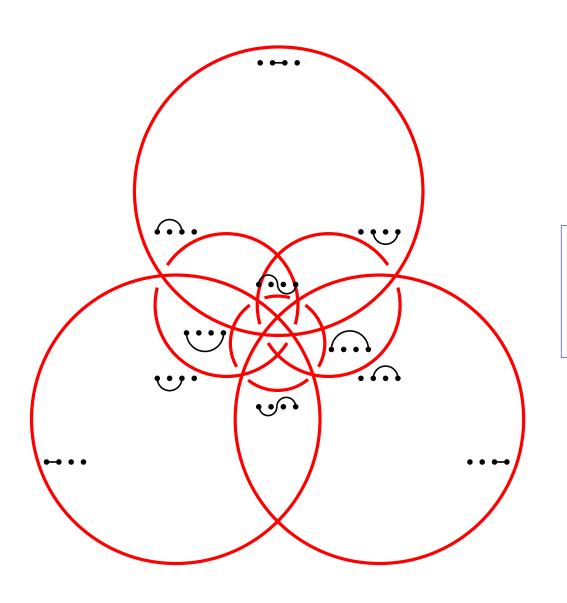


QUOTIENT FAN

Reading, Lattice congruences, fans and Hopf algebras ('05) Reading, Finite Coxeter groups and the weak order ('16) Reading, Lattice theory of the poset of regions ('16)

SHARDS

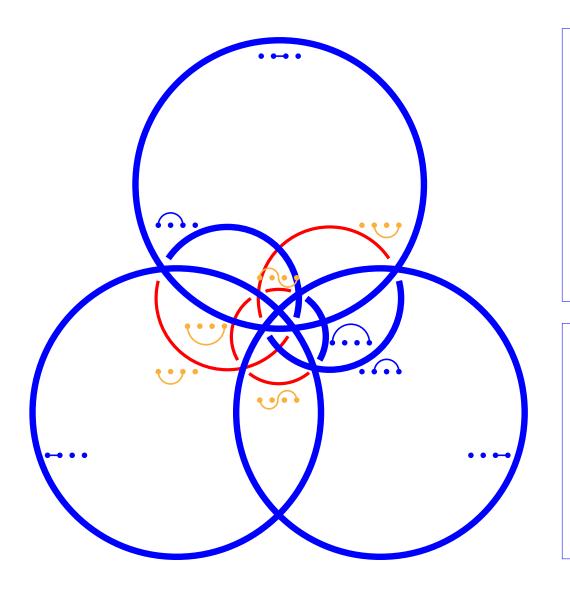
$$\underline{\mathsf{shard}}\ \Sigma(i,j,n,S) \coloneqq \left\{ \mathbf{x} \in \mathbb{R}^n \ \middle|\ x_i = x_j \ \mathsf{and}\ \left[\begin{array}{l} x_i \leq x_k \ \mathsf{for\ all}\ k \in S \ \mathsf{while} \\ x_i \geq x_k \ \mathsf{for\ all}\ k \in]i,j[\ \diagdown \ S \end{array} \right\}$$



THM. The shards $\Sigma(i, j, n, S)$ for all subsets $S \subseteq]i, j[$ decompose the hyperplane $x_i = x_j$ into 2^{j-i-1} pieces.

SHARDS AND QUOTIENT FAN

$$\underline{\mathsf{shard}}\ \Sigma(i,j,n,S) \coloneqq \left\{ \mathbf{x} \in \mathbb{R}^n \ \middle|\ x_i = x_j \ \mathsf{and}\ \left[\begin{array}{l} x_i \leq x_k \ \mathsf{for\ all}\ k \in S \ \mathsf{while} \\ x_i \geq x_k \ \mathsf{for\ all}\ k \in]i,j[\ \diagdown \ S \end{array} \right\}$$



THM. For a lattice congruence \equiv on \mathfrak{S}_n , the cones obtained by glueing the Coxeter regions of the permutations in the same congruence class of \equiv form a fan \mathcal{F}_{\equiv} of \mathbb{R}^n whose dual graph realizes the lattice quotient \mathfrak{S}_n/\equiv .

Reading, Lattice congruences, fans and Hopf algebras ('05)

THM. Each lattice congruence \equiv on \mathfrak{S}_n corresponds to a set of shards Σ_{\equiv} such that the cones of \mathcal{F}_{\equiv} are the connected components of the complement of the union of the shards in Σ_{\equiv} .

Reading, Lattice congruences, fans and Hopf algebras ('05)

SHARD IDEALS

SHARD IDEALS

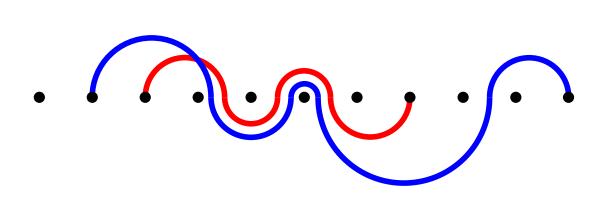
THM. Each lattice congruence \equiv on \mathfrak{S}_n corresponds to a set of shards Σ_{\equiv} such that the cones of \mathcal{F}_{\equiv} are the connected components of the complement of the union of the shards in Σ_{\equiv} .

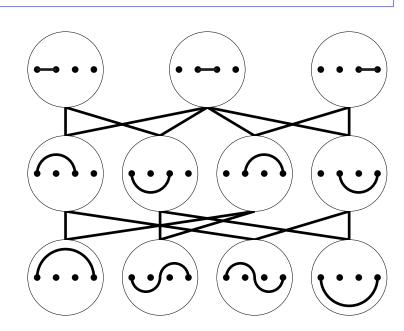
Reading, Lattice congruences, fans and Hopf algebras ('05)

THM. The following are equivalent for a set of shards Σ :

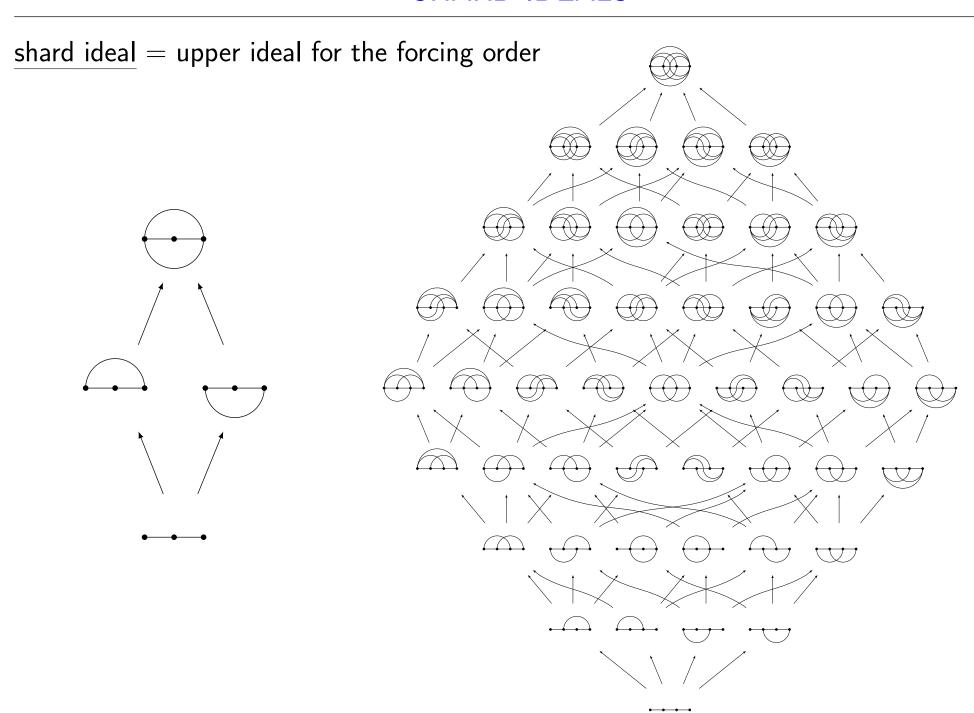
- ullet there exists a lattice congruence \equiv on \mathfrak{S}_n with $oldsymbol{\Sigma} = oldsymbol{\Sigma}_{\equiv}$,
- Σ is an upper ideal for the order $\Sigma(a,d,n,S) \prec \Sigma(b,c,n,T) \iff a \leq b < c \leq d$ and $T = S \cap]b,c[$.

Reading, Noncrossing arc diagrams and can. join representations ('15)





SHARD IDEALS



QUOTIENTOPES

QUOTIENTOPE

fix a <u>forcing dominant</u> function $f: \sigma \to \mathbb{R}_{>\mathbf{0}}$ ie. st. $f(\Sigma) > \sum_{\Sigma' \succ \Sigma} f(\Sigma')$ for any shard Σ .

for a shard $\Sigma=(i,j,n,S)$ and a subset $\varnothing\neq R\subsetneq [n]$ define the contribution

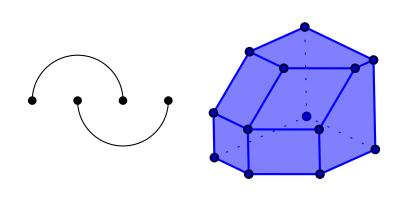
$$\gamma(\Sigma,R)\coloneqq \begin{cases} 1 & \text{if } |R\cap\{i,j\}|=1 \text{ and } S=R\cap]i,j[\text{,}\\ 0 & \text{otherwise} \end{cases}$$

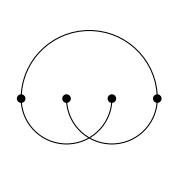
define <u>height function</u> h for $\varnothing \neq R \subsetneq [n]$ by $h^f_\equiv(R) := \sum_{\Sigma \in \Sigma_\equiv} f(\Sigma) \, \gamma(\Sigma, R)$.

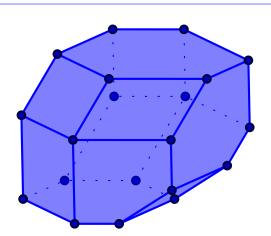
THM. For a lattice congruence \equiv on \mathfrak{S}_n and a forcing dominant function $f: \Sigma \to \mathbb{R}_{>0}$, the quotient fan \mathcal{F}_{\equiv} is the normal fan of the polytope

$$P^f_\equiv := \big\{ \mathbf{x} \in \mathbb{R}^n \; \big| \; \langle \; \mathbf{r}(R) \; | \; \mathbf{x} \; \rangle \leq h^f_\equiv(R) \text{ for all } \varnothing \neq R \subsetneq [n] \big\}.$$

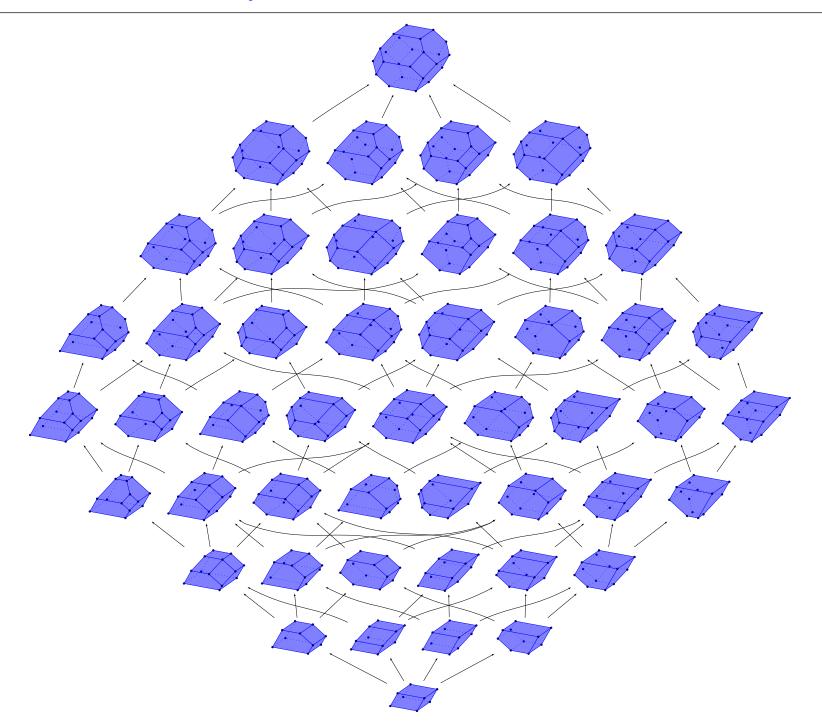
P.-Santos, *Quotientopes* ('17⁺)



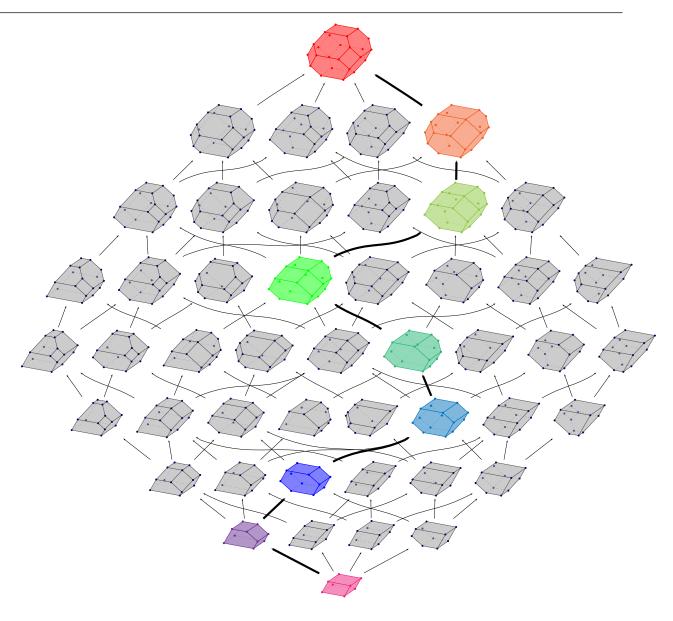




QUOTIENTOPE LATTICE



QUOTIENTOPE LATTICE



POLYWOOD

TOWARDS QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS

 \mathcal{H} hyperplane arrangement in \mathbb{R}^n B distinguished region of $\mathbb{R}^n \smallsetminus \mathcal{H}$ inversion set of a region C = set of hyperplanes of \mathcal{H} that separate B and C poset of regions $\operatorname{Pos}(\mathcal{H},B) = \text{regions}$ of $\mathbb{R}^n \smallsetminus \mathcal{H}$ ordered by inclusion of inversion sets

THM. The poset of regions $Pos(\mathcal{H}, B)$

- ullet is never a lattice when B is not a simple region,
- ullet is always a lattice when ${\cal H}$ is a simplicial arrangement.

Björner-Edelman-Ziegler, Hyperplane arrangements with a lattice of regions ('90)

THM. If $Pos(\mathcal{H}, B)$ is a lattice, and \equiv is a lattice congruence of $Pos(\mathcal{H}, B)$, the cones obtained by glueing together the regions of $\mathbb{R}^n \setminus \mathcal{H}$ in the same congruence class form a complete fan.

Reading, Lattice congruences, fans and Hopf algebras ('05)

Is the quotient fan polytopal?