## The Computational Geometry of

 Congruence Testing, Part IIGünter Rote
Freie Universität Berlin


## The Computational Geometry of

 Congruence Testing, Part IIGünter Rote
Freie Universität Berlin

- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions $\int \longleftarrow$ today (joint work with Heuna Kim)
- dimensions $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time [Brass and Knauer 2002] $O\left(n^{\lfloor(d+2) / 2\rfloor / 2} \log n\right)$ Monte Carlo [Akutsu 1998/Matoušek]
$\downarrow O\left(n^{\lfloor(d+1) / 2\rfloor / 2} \log n\right)$ time
- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions $\longleftarrow$ today (joint work with Heuna Kim)
- $d$ dimensions $O\left(n^{\lceil d / 3\rceil} \log n\right)$ time [Brass and Knauer 2002]
$O\left(n^{\lfloor(d+2) / 2\rfloor / 2} \log n\right)$ Monte Carlo [Akutsu 1998/Matoušek]
$\downarrow O\left(n^{\lfloor(d+1) / 2\rfloor / 2} \log n\right)$ time
- Rotations in 4 -space
- Plücker coordinates for 2-planes in 4-space
- The Hopf fibration of $\mathbb{S}^{3}$
- Closest pair graph
- $2+2$ dimension reduction
- Coxeter classification of reflection groups


## 4 Dimensions: Algorithm Overview

joint work with Heuna Kim


## 4 Dimensions: Algorithm Overview

joint work with Heuna Kim


## Initialization: Closest-Pair Graph

1) PRUNE by distance from the origin.

- $\Longrightarrow$ we can assume that $A$ lies on the 3 -sphere $\mathbb{S}^{3}$.

2) Compute the closest pair graph

$$
G(A)=(A,\{u v:\|u-v\|=\delta\})
$$

where $\delta:=$ the distance of the closest pair, in $O(n \log n)$ time. [ Bentley and Shamos, STOC 1976 ]

- We can assume that $\delta$ is SMALL: $\delta \leq \delta_{0}:=0.0005$. (Otherwise, $|A| \leq n_{0}$, by a packing argument.)


## Everything looks the same!

By the PRUNING principle, we can assume that all points look locally the same:

- All points have congruent neighborhoods in $G(A)$.
(The neighbors of $u$ lie on a 2 -sphere in $\mathbb{S}^{3}$; There are at most $K_{3}=12$ neighbors.)



## Everything looks the same!

By the PRUNING principle, we can assume that all points look locally the same:

- All points have congruent neighborhoods in $G(A)$.
(The neighbors of $u$ lie on a 2 -sphere in $\mathbb{S}^{3}$;
There are at most $K_{3}=12$ neighbors.)
- Make a directed graph $D$ from $G(A)$ and PRUNE its arcs $u v$ by
 the joint neighborhood of $u$ and $v$.



## Everything looks the same!

By the PRUNING principle, we can assume that all points look locally the same:

- All points have congruent neighborhoods in $G(A)$.
(The neighbors of $u$ lie on a 2 -sphere in $\mathbb{S}^{3}$;
There are at most $K_{3}=12$ neighbors.)
- Make a directed graph $D$ from $G(A)$ and PRUNE its arcs $u v$ by
 the joint neighborhood of $u$ and $v$.



## Everything looks the same!

By the PRUNING principle, we can assume that all points look locally the same:

- All points have congruent neighborhoods in $G(A)$.
(The neighbors of $u$ lie on a 2 -sphere in $\mathbb{S}^{3}$;
There are at most $K_{3}=12$ neighbors.)
- Make a directed graph $D$ from $G(A)$ and PRUNE its arcs $u v$ by
 the joint neighborhood of $u$ and $v$.



## Everything looks the same!

By the PRUNING principle, we can assume that all points look locally the same:

- All points have congruent neighborhoods in $G(A)$.
(The neighbors of $u$ lie on a 2 -sphere in $\mathbb{S}^{3}$;
There are at most $K_{3}=12$ neighbors.)
- Make a directed graph $D$ from $G(A)$ and PRUNE its arcs $u v$ by
 the joint neighborhood of $u$ and $v$.
- ... until all arcs $u v$ look the same.



## Algorithm Overview



## Algorithm Overview



## Algorithm Overview



## Predecessor-Successor Figure

Pick some $\alpha . \quad s(u v):=\{v w: v w \in E, \angle u v w=\alpha\}$


## Predecessor-Successor Figure

Pick some $\alpha . \quad s(u v):=\{v w: v w \in E, \angle u v w=\alpha\}$


## Predecessor-Successor Figure

Pick some $\alpha . \quad s(u v):=\{v w: v w \in E, \angle u v w=\alpha\}$


## Predecessor-Successor Figure

Pick some $\alpha . \quad s(u v):=\{v w: v w \in E, \angle u v w=\alpha\}$


## Predecessor-Successor Figure

Pick some $\alpha . \quad s(u v):=\{v w: v w \in E, \angle u v w=\alpha\}$


## Orbit cycles

For every path $p_{i} p_{i+1} p_{i+2}$ with $\angle p_{i} p_{i+1} p_{i+2}=\alpha$, $\exists p_{i+3}$ with $\angle p_{i+1} p_{i+2} p_{i+3}=\alpha$ and torsion $\tau_{0}$.


## Orbit cycles

I For every path $p_{i} p_{i+1} p_{i+2}$ with $\angle p_{i} p_{i+1} p_{i+2}=\alpha$, $\exists p_{i+3}$ with $\angle p_{i+1} p_{i+2} p_{i+3}=\alpha$ and torsion $\tau_{0}$.


## Orbit cycles

For every path $p_{i} p_{i+1} p_{i+2}$ with $\angle p_{i} p_{i+1} p_{i+2}=\alpha$, $\exists p_{i+3}$ with $\angle p_{i+1} p_{i+2} p_{i+3}=\alpha$ and torsion $\tau_{0}$.


$$
R\left(p_{0}, p_{1}, p_{2}\right)=\left(p_{1}, p_{2}, p_{3}\right)
$$

## Orbit cycles

I For every path $p_{i} p_{i+1} p_{i+2}$ with $\angle p_{i} p_{i+1} p_{i+2}=\alpha$, $\exists p_{i+3}$ with $\angle p_{i+1} p_{i+2} p_{i+3}=\alpha$ and torsion $\tau_{0}$.


$$
\begin{aligned}
& R\left(p_{0}, p_{1}, p_{2}\right)=\left(p_{1}, p_{2}, p_{3}\right) \\
& R\left(p_{0}, p_{1}, p_{2}, p_{3}\right)=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)
\end{aligned}
$$

## Orbit cycles

I For every path $p_{i} p_{i+1} p_{i+2}$ with $\angle p_{i} p_{i+1} p_{i+2}=\alpha$, $\exists p_{i+3}$ with $\angle p_{i+1} p_{i+2} p_{i+3}=\alpha$ and torsion $\tau_{0}$.


$$
\begin{aligned}
& R\left(p_{0}, p_{1}, p_{2}\right)=\left(p_{1}, p_{2}, p_{3}\right) \\
& R\left(p_{0}, p_{1}, p_{2}, p_{3}\right)=\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \\
& R\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\left(p_{2}, p_{3}, p_{4}, p_{5}\right)
\end{aligned}
$$

$R p_{i}=p_{i+1}$ : The orbit of $p_{0}$ under $R$, a helix

## Rotations in 4 dimensions

$$
R=\left(\begin{array}{cccc}
\cos \varphi & -\sin \varphi & 0 & 0 \\
\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & \cos \psi & -\sin \psi \\
0 & 0 & \sin \psi & \cos \psi
\end{array}\right)=\left(\begin{array}{cc}
R_{\varphi} & 0 \\
0 & R_{\psi}
\end{array}\right)
$$

in some appropriate coordinate system.
$\varphi \neq \pm \psi: \rightarrow$ unique decomposition $\mathbb{R}^{4}=P \oplus Q$ into two completely orthogonal 2-dimensional axis planes $P$ and $Q$ $\varphi= \pm \psi$ : isoclinic rotations

The orbit of a point $p_{0}=\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ lies on a helix on a flat torus $C_{r} \times C_{s}$, with $r=\sqrt{x_{1}^{2}+y_{1}^{2}}, s=\sqrt{x_{2}^{2}+y_{2}^{2}}$
circle with radius $r$

## Rotations in 4 dimensions

$$
R=\left(\begin{array}{cccc}
\cos \varphi & -\sin \varphi & 0 & 0 \\
\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & \cos \psi & -\sin \psi \\
0 & 0 & \sin \psi & \cos \psi
\end{array}\right)=\left(\begin{array}{cc}
R_{\varphi} & 0 \\
0 & R_{\psi}
\end{array}\right)
$$

The orbit of a point $p_{0}=\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ lies on a helix on a flat torus $C_{r} \times C_{s}$, with $r=\sqrt{x_{1}^{2}+y_{1}^{2}}, s=\sqrt{x_{2}^{2}+y_{2}^{2}}$


## Planes in 4 dimensions

- Every point lies on $\leq 60$ orbit cycles.
- Every orbit cycle contains $\geq 12000$ points, because $\delta$ is small.
- Every orbit cycle generates 1 plane (corresponding to the smaller of $\varphi$ and $\psi$.)
$\Longrightarrow$ a collection of $\leq n / 200$ planes (or: great circles)


## Algorithm Overview




## Marking Points on Great Circles



## Marking Points on Great Circles



## Marking Points on Great Circles


projection of another unt circle $Q$ a neighbor of $P$

IDEA: mark those two points in $P$ IDEA 2: Construct the closest-pair graph in the space of great circles, in $O(n \log n)$ time.

## Plücker coordinates

planes in 4 -space $\Leftrightarrow$ great circles on $\mathbb{S}^{3} \Leftrightarrow$ a.k.a. lines in $\mathbb{R} P^{3}$ plane through $\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ and $\left(x_{1}^{\prime}, y_{1}^{\prime}, x_{2}^{\prime}, y_{2}^{\prime}\right)$ :
$\left(v_{1}, \ldots, v_{6}\right)=\left(\left|\begin{array}{ll}x_{1} & y_{1} \\ x_{1}^{\prime} & y_{1}^{\prime}\end{array}\right|,\left|\begin{array}{ll}x_{1} & x_{2} \\ x_{1}^{\prime} & x_{2}^{\prime}\end{array}\right|,\left|\begin{array}{ll}x_{1} & y_{2} \\ x_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|,\left|\begin{array}{ll}y_{1} & x_{2} \\ y_{1}^{\prime} & x_{2}^{\prime}\end{array}\right|,\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|,\left|\begin{array}{ll}x_{2} & y_{2} \\ x_{2}^{\prime} & y_{2}^{\prime}\end{array}\right|\right)$
$\left(v_{1}, \ldots, v_{6}\right) \in \mathbb{R} P^{5} . \quad\left[P l u ̈ c k e r ~ r e l a t i o n s ~ v_{1} v_{6}-v_{2} v_{5}+v_{3} v_{4}=0\right]$
Normalize:
$\rightarrow$ A great circle is represented by two antipodal points on $\mathbb{S}^{5}$.
This representation is geometrically meaningful: Distances on $\mathbb{S}^{5}$ are preserved under rotations of $\mathbb{R}^{4} / \mathbb{S}^{3}$.
(Packings of 2-planes in 4-space were considered by [Conway, Hardin and Sloane 1996], with different distances.)

## Marking Points on Great Circles


projection of another undircle $Q$ a neighbor of $P$

IDEA: mark those two points in $P$ IDEA 2: Construct the closest-pair graph in the space of great circles, in $O(n \log n)$ time.
Every plane has at most $K_{5} \leq 44$ neighbors.

## Marking Points on Great Circles


$m \leq \frac{n}{200}$ great circles in $\mathbb{R}^{4} \quad \longrightarrow \quad m$ point pairs on $\mathbb{S}^{5}$ At most $88(\leq 100)$ points are marked on every great circle.

These points replace $A$. $\rightarrow$ successful CONDENSATION



## Isoclinic planes



## Isoclinic planes



Problem if all closest pairs are isoclinic.


Problem if all closest pairs are isoclinic.

Constant distances from one circle to the other. "Clifford-parallel" $\equiv$ isoclinic

## Clifford-parallel circles

$P:\left(\begin{array}{l}x_{1} \\ y_{1} \\ x_{2} \\ y_{2}\end{array}\right)=\left(\begin{array}{c}\cos t \\ \sin t \\ 0 \\ 0\end{array}\right), Q:\left(\begin{array}{c}r \cos t \\ r \sin t \\ s \cos (\alpha+t) \\ s \sin (\alpha+t)\end{array}\right)$
$r^{2}+s^{2}=1$

## Clifford-parallel circles

$P:\left(\begin{array}{l}x_{1} \\ y_{1} \\ x_{2} \\ y_{2}\end{array}\right)=\left(\begin{array}{c}\cos t \\ \sin t \\ 0 \\ 0\end{array}\right), Q:\left(\begin{array}{c}r \cos t \\ r \sin t \\ s \cos (\alpha+t) \\ s \sin (\alpha+t)\end{array}\right)$

$$
r^{2}+s^{2}=1
$$



## Clifford-parallel circles

$P:\left(\begin{array}{l}x_{1} \\ y_{1} \\ x_{2} \\ y_{2}\end{array}\right)=\left(\begin{array}{c}\cos t \\ \sin t \\ 0 \\ 0\end{array}\right), Q:\left(\begin{array}{c}r \cos t \\ r \sin t \\ s \cos (\alpha+t) \\ s \sin (\alpha+t)\end{array}\right) \quad Q^{\prime}:\left(\begin{array}{c}r \cos t \\ r \sin t \\ s \cos (\alpha-t) \\ s \sin (\alpha-t)\end{array}\right)$

$$
r^{2}+s^{2}=1
$$

$$
\begin{gathered}
h\left(x_{1}, y_{1}, x_{2}, y_{2}\right)=\quad \text { the right Hopf map } h: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2} \\
\left(2\left(x_{1} y_{2}-y_{1} x_{2}\right), 2\left(x_{1} x_{2}+y_{1} y_{2}\right), 1-2\left(x_{2}^{2}+y_{2}^{2}\right)\right)
\end{gathered}
$$

Right Hopf map $h: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$
The fibers $h^{-1}(p)$ for $p \in \mathbb{S}^{2}$ are great circles: a Hopf bundle Every great circle belongs to a unique right Hopf bundle. Isoclinic $\equiv$ belong to the same Hopf bundle This is a transitive relation.
stereographic projection $\mathbb{S}^{3} \rightarrow \mathbb{R}^{3}$
(Villarceau circles)

Right Hopf map $h: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$
The fibers $h^{-1}(p)$ for $p \in \mathbb{S}^{2}$ are great circles: a Hopf bundle
Every great circle belongs to a unique right Hopf bundle. Isoclinic $\equiv$ belong to the same Hopf bundle This is a transitive relation.

If all closest pairs are isoclinic
$\rightarrow$ all great circles in a connected component of the closest-pair graph belong to the same bundle.
$\rightarrow h$ maps them to points on $\mathbb{S}^{2}$.
We know how to deal with $\mathbb{S}^{2}$ !

Equivariant condensation on the 2-sphere:
Input: $A \subseteq \mathbb{S}^{2}$.
Output: $A^{\prime} \subseteq \mathbb{S}^{2},\left|A^{\prime}\right| \leq \min \{|A|, 12\}$.

- $A^{\prime}=$ vertices of a regular icosahedron
- $A^{\prime}=$ vertices of a regular octahedron
- $A^{\prime}=$ vertices of a regular tetrahedron
- $A^{\prime}=$ two antipodal points, or
- $A^{\prime}=$ a single point.

Equivariant condensation on the 2-sphere:
Input: $A \subseteq \mathbb{S}^{2}$.
Output: $A^{\prime} \subseteq \mathbb{S}^{2},\left|A^{\prime}\right| \leq \min \{|A|, 12\}$.

- $A^{\prime}=$ vertices of a regular icosahedron
- $A^{\prime}=$ vertices of a regular octahedron
- $A^{\prime}=$ vertices of a regular tetrahedron
- $A^{\prime}=$ two antipodal points, or
- $A^{\prime}=$ a single point.

Condense each connected component of the closest-pair graph to $\leq 12$ great circles.
Compute closest-pair graph (on $\mathbb{S}^{5}$ ) from scratch. If no progress, distance between closest pairs is $\geq D_{\text {icosa }}$ $\rightarrow \leq 829$ great circles $\rightarrow 2+2$ DIMENSION REDUCTION



## $2+2$ Dimension Reduction

We have a plane $P$ and we know its image in $B$.


## $2+2$ Dimension Reduction



## $2+2$ Dimension Reduction



## 2+2 Dimension Reduction




Are they the same up to translation on the $\varphi_{1}, \varphi_{2}$-torus?

## 2+2 Dimension Reduction

Prune without losing information:
 (CANONICAL SET)

## 2+2 Dimension Reduction

Prune without losing information:
 (CANONICAL SET)

Pick a color class

## 2+2 Dimension Reduction

## Prune without losing information: (CANONICAL SET) <br> Pick a color class

## 2+2 Dimension Reduction

Prune without losing information:
 (CANONICAL SET)
Pick a color class
Compute the Voronoi diagram

## 2+2 Dimension Reduction



After recoloring, the reduced set has THE SAME translational symmetries as the old set.

Termination:


All points have the same color and the same cell shape (a modular lattice)

ANY point is as good a representative as any other.

CANONICAL SET $c(A)$ : move (any) representative point to $\left(\varphi_{1}, \varphi_{2}\right)=(0,0)$, or to $\left(x_{1}, 0, x_{3}, 0\right)$.
$\exists T$ with $T P=P$ and $T A=B \Longleftrightarrow c(A)=c(B)$


## Algorithm Overview



## The Mirror Case

Pick some $\alpha . \quad s(u v):=\{v w: v w \in E, \angle u v w=\alpha\}$


Every edge acts like a perfect mirror of the neighborhood.
$\rightarrow$ Every connnected component is the orbit of a point under a group generated by reflections.

These groups have been classified. (Coxeter groups)

- "small" components $\rightarrow$ condensing
- Cartesian product of 2-dimensional groups (infinite family) $\rightarrow 2+2$ dimension reduction
- "large" components (finite family)

$$
\rightarrow|A| \leq n_{0}
$$

## Algorithm Overview



## Algorithm Overview



## Afterthoughts

- 5 dimensions and higher
- terrible constants
- chimeras
- tolerances, $\leq \varepsilon$ versus $\geq 10 \varepsilon$
- depth of construction ( $\rightarrow$ degree of predicates)
- Plücker space
- point groups in 4 dimensions


## Symmetry groups

COROLLARY. The symmetry group of a finite full-dimensional point set in 3 -space ( $=$ a discrete subgroup of $O(3)$ ) is

- the symmetry group of a Platonic solid,
- the symmetry group of a regular prism,
- or a subgroup of such a group.


The point groups (discrete subgroups of $O(3)$ ) are classified (Hessel's Theorem).
[ F. Hessel 1830, M. L. Frankenheim 1826 ]

## Point groups in higher dimensions

## Bold and naive CONJECTURE:

¿The symmetry group of a finite full-dimensional point set in $d$-space ( $=$ a discrete subgroup of $O(d)$ ) is

- the symmetry group of a regular $d$-dimensional polytope:
- a regular simplex
-     * a hypercube (or its dual, the crosspolytope)
- a regular $n$-gon in two dimensions
- a dodecahedron (or its dual, the icosahedron) in 3 d .
- a 24 -cell, or a 120 -cell (or its dual, the 600 -cell) in 4 d .
- the symmetry group of the Cartesian product of lower-dimensional regular polytopes,
- or a subgroup of such a group?


## Point groups in higher dimensions

## Bold and naive CONJECTURE:

¿The symmetry group of a finite full-dimensional point set in $d$-space ( $=$ a discrete subgroup of $O(d)$ ) is

- the symmetry group of a regular $d$-dimensional polytope:
- a regular simplex
-     * a hypercube (or its dual, the crosspolytope)
- a regular $n$-gon in two dimensions
- a dodecahedron (or its dual, the icosahedron) in 3 d .
- a 24 -cell, or a 120 -cell (or its dual, the 600 -cell) in 4 d .
- the symmetry group of the Cartesian product of lower-dimensional regular polytopes,
- or a subgroup of such a group?

Counterexample (Paco Santos, by divisibility). The symmetry groups of the root systems $E_{6}, E_{7}, E_{8}$ in 6, 7, 8 dimensions.

- [ W. Threlfall and H. Seifert, Math. Annalen, 1931, 1933] enumerated discrete subgroups of $S O(4)($ determinant +1$)$
- [ J. Conway and D. Smith 2003 ] complete enumeration of point groups

4d-rotation $T \leftrightarrow$ pair $(R, S)$ of 3d-rotations. (for example, via quaternions)

Goursat's Lemma: [ É. Goursat 1890 ]
Pairs of 3d point groups

+ additional information
$\rightarrow$ 4d point groups

- The groups generated by reflections (Coxeter groups) have been enumerated up to 8 dimensions.
[ Norman Johnson, unpublished book manuscript ]


Table 4.1. Chiral groups, I. These are most of the "metachiral" groups-s 4.6-some others appear in the last few lines of Table 4.2

## The four-dimensional point groups



Table 4.2. Chiral groups, II. These groups are mostly "orthochiral." with a few

## Table 4.2. <br> The chiral groups (continued)

## The four-dimensional point groups

| Group | Extending element | Coxeter Name |
| :---: | :---: | :---: |
| $\pm[I \times I] \cdot 2$ | * | [3, 3, 5] |
| $\pm \frac{1}{60}[I \times I] \cdot 2$ | * | 2.[3,5] |
| $+\frac{1}{60}[I \times I] \cdot 23$ or $2_{1}$ | * or -* | $[3,5]$ or $[3,5]^{\circ}$ |
| $\pm \frac{1}{60}[I \times \bar{I}] \cdot 2$ | * | 2. [3, 3, 3] |
| $+\frac{1}{60}[I \times \bar{I}] \cdot 23$ or $2_{1}$ | * or -* | $[3,3,3]^{\circ}$ or $[3,3,3]$ |
| $\pm[\mathrm{O} \times \mathrm{O}] \cdot 2$ | * | $[3,4,3]: 2$ |
| $\pm \frac{1}{2}[O \times O] \cdot 2$ or $\overline{2}$ | * or * $\left[1, i_{0}\right]$ | $[3,4,3]$ or $[3,4,3]^{+} 2$ |
| $\pm \frac{1}{6}[0 \times O] \cdot 2$ | * | [3, 3, 4] |
| $\pm \frac{1}{24}[0 \times O] \cdot 2$ | * | 2. [3, 4] |
| $+\frac{1}{24}[\mathrm{O} \times \mathrm{O}] \cdot 2_{3}$ or $2_{1}$ | * or -* | $[3,4]$ or $[3,4]^{\circ}$ |
| $+\frac{1}{24}[0 \times \bar{O}] \cdot 2_{3}$ or $2_{1}$ | * or -* | [2,3,3] ${ }^{\circ}$ or $[2,3,3]$ |
| $\pm[T \times T] \cdot 2$ | * | [3, 4, $3^{+}$] |
| $\pm \frac{1}{3}[T \times T] \cdot 2$ | * | $\left.{ }^{+} 3,3,4\right]$ |
| $\pm \frac{1}{3}[T \times \bar{T}] \cdot 2$ | * | [3, 3, 4 ${ }^{+}$] |
| $\pm \frac{1}{12}[T \times T] \cdot 2$ | * | 2. $\left.{ }^{+} 3,4\right]$ |
| $\pm \frac{1}{12}[T \times \bar{T}] \cdot 2$ | * | 2. $[3,3]$ |
| $+\frac{1}{12}[T \times T] \cdot 2_{3}$ or $2_{1}$ | * or | $\left[^{+} 3,4\right]$ or $\left[{ }^{+} 3,4\right]^{\circ}$ |
| $+\frac{1}{12}[T \times \bar{T}] \cdot 2_{3}$ or $2_{1}$ | * or | $[3,3]^{\circ}$ or $[3,3]$ |
| $\pm\left[D_{2 n} \times D_{2 n}\right] \cdot 2$ | * |  |
| $\pm \frac{1}{2}\left[\bar{D}_{4 n} \times \bar{D}_{4 n}\right] \cdot 2$ or $\overline{2}$ | * or * [1, e $2_{2 n}$ ] |  |
| $\pm \frac{1}{4}\left[D_{4 n} \times \bar{D}_{4 n}\right] \cdot 2$ | * | Conditions |
| $+\frac{1}{4}\left[D_{4 n} \times \bar{D}_{4 n}\right] \cdot 2_{3}$ or $2_{1}$ | or | $n$ odd |
| $\pm \frac{1}{2 f}\left[D_{2 n f} \times D_{2 n f}^{(s)}\right] \cdot 2^{(\alpha, \beta)}$ or $\overline{2}$ | $*\left[e_{2 n f}^{\alpha}, e_{2 n f}^{\alpha s+\beta f}\right]$ or $*[1, j]$ | See |
| $+\frac{1}{2 f}\left[D_{2 n f} \times D^{(s)}\right.$ (sf) $] \cdot 2^{(\alpha, \beta)}$ or $\overline{2}$ | $*\left[e_{2 n f}^{\alpha}, e_{2 n f}^{\alpha s+\beta f}\right]$ or $*[1, j]$ | Text |
| ${ }^{ \pm}+\frac{1}{f}\left[C_{n f} \times C_{n n}^{(s)}\right] \cdot 2^{(r)}$ | $\cdots\left[1, e_{2 n f}^{\gamma(f, s+1)}\right]$ | in |
| $\underline{+\frac{1}{f}\left[C_{n f} \times C_{n f}^{(s)}\right] \cdot 2^{(r)}}$ | $*\left[1, e_{2 n f}^{r f(f, s+1)}\right]$ | Appendix |

Table 4.3. Achiral groups.

## Table 4.3. The achiral groups



## Point groups in four dimensions

## Bold and naive CONJECTURE:

¿The symmetry group of a finite full-dimensional point set in 4 -space ( $=$ a discrete subgroup of $O(4)$ ) is

- the symmetry group of a regular $d$-dimensional polytope:
- a regular simplex
- a regular $n$-gon in two dimensions
- a dodecahedron (or its dual, the icosahedron) in 3 d .
- a 24 -cell, or a 120 -cell (or its dual, the $600-$ cell) in 4 d .
- the symmetry group of the Cartesian product of lower-dimensional regular polytopes,
- or a subgroup of such a group?


## Point groups in four dimensions

## Bold and naive CONJECTURE:

¿The symmetry group of a finite full-dimensional point set in 4 -space ( $=$ a discrete subgroup of $O(4)$ ) is

- the symmetry group of a regular $d$-dimensional polytope:
- a regular simplex
- a regular $n$-gon in two dimensions
- a dodecahedron (or its dual, the icosahedron) in 3 d .
- a 24 -cell, or a 120 -cell (or its dual, the 600 -cell) in 4 d .
- the symmetry group of the Cartesian product of lower-dimensional regular polytopes,
- or a subgroup of such a group?

Counterexample: $I \times C_{n}$ (group-theoretic product, but not geometric Cartesian product) Icosahedron on $\mathbb{S}^{2} \Rightarrow 12$ great circles with regular $n$-gons in $\mathbb{S}^{3}$

Counterexample: $I \times C_{n}$ (group-theoretic product, but not geometric Cartesian product) Icosahedron on $\mathbb{S}^{2} \Rightarrow 12$ great circles with regular $n$-gons in $\mathbb{S}^{3}$

http://www.geom.uiuc.edu/~banchoff/script/b3d/hypertorus.html


