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Inverse problems

Inverse problems are problems of the form :

Reconstruct an “unknown object”
from some set of “measurements” ?

In this mini-course, we will discuss a family of inverse
problems, called phase retrieval problems.
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Outline

This morning : introduction to phase retrieval problems.

I Definition, motivations

I When is there hope to solve a phase retrieval problem ?
I First case : “generic” problems
I Second case : “non-generic” problems

This afternoon : a first family of reconstruction algorithms.

Tomorrow : a second family of reconstruction algorithms.
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Phase retrieval problems : definition

Let

I V be a fixed complex vector space ;

I x be an unknown element of V ;

I (Ls)s∈S be a (known) family of linear forms on V .

The corresponding linear inverse problem would be :

Reconstruct x ∈ V from (Ls(x))s∈S ?

Typically “easy” to solve.
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Phase retrieval problems : definition

Here, we assume that we do not have access to the phase of
Ls(x).
→ We have only its modulus.

General form of a phase retrieval problem :

Reconstruct x ∈ V from (|Ls(x)|)s∈S ?

(Called “phase retrieval” because, if you can retrieve the
phases, you can easily reconstruct x by solving the linear
inverse problem.)
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Global phase ambiguity

Reconstruct x ∈ V from (|Ls(x)|)s∈S ?

Let u ∈ C have modulus 1. For any s ∈ S ,

|Ls(ux)| = |uLs(x)|
= |Ls(x)|.

⇒ It is not possible to distinguish x from ux .

We only aim at recovering x up to multiplication by a unitary
complex number.
We call it reconstruction up to a global phase.
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First motivation : X-ray imaging

Electromagnetic

waves

Object

on a plate

Screen

Diffracted
waves

[Schechtman, Eldar, Cohen, Chapman, Miao, and Segev, 2015]
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First motivation : X-ray imaging

We aim at recovering the support function of the object :

f : R2 → C
(x , y) → 1 if point (x , y) of the plate is

masked by the object,
(x , y) → 0 otherwise.

The diffracted wave, when it arrives to the screen, can be
described by a function Fscreen : R2 → C.

This Fscreen is (approximately) the Fourier transform of f :

Fscreen = f̂
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First motivation : X-ray imaging

For any (x , y) ∈ R2, it is possible to measure |Fscreen(x , y)|,
but not phase(Fscreen(x , y)).

Recall that Fscreen = f̂ .

Reconstruct a compactly supported f

from (|f̂ (x , y)|)(x ,y)∈R2 ?

This is a phase retrieval problem.
(The most important one, historically and in applications.)
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Second motivation : audio processing

Goal of audio processing : develop algorithms to solve tasks
involving sound recordings, that would be too difficult or
tedious for human persons to perform.

Main difficulty : an audio signal is a complicated object.

It can be represented by a
function

f : R→ R,
usually with no obvious
“structure”.
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Second motivation : audio processing

Idea : use an intermediate representation, easier to analyze.

(f : R→ R) −→ (|Wf | : R+ × R→ R+).

|Wf | : modulus of the “short-time Fourier transform” or
“wavelet transform” of f .

f : R→ R |Wf | : R+ × R→ R+
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Second motivation : audio processing

Typical pipeline of an algorithm

f −→ |Wf | some analysis−→ result

When the expected result is a new audio signal,

f −→ |Wf | some analysis−→ |Wg | reconstruction−→ g

This step is a phase retrieval problem.
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Reconstruct x ∈ V from (|Ls(x)|)s∈S ?

When can we hope to solve this problem ?

At least two possible issues :

I No uniqueness of the reconstruction :

There exist x 6= y such that ∀s, |Ls(x)| = |Ls(y)|.

I No stability

There exist x 6≈ y such that ∀s, |Ls(x)| ≈ |Ls(y)|.

If one of these issues arises, we say the the problem is ill-posed.
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For a given a family of linear forms (Ls)s∈S , can we determine
whether there is uniqueness and stability ?

→ It is difficult.

Two main situations

1. The Ls are “generic” or random, chosen according to a
simple probability law.

I Analysis is doable.
I Uniqueness and stability tend to hold.

2. The Ls are deterministic, imposed by a specific
application.

I Analysis is usually difficult or impossible.
I Uniqueness and stability may fail to hold.
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Generic / random case, in finite dimension

Reconstruct x ∈ V from (|Ls(x)|)s∈S ?

To simplify, we assume dim(V ) and Card(S) to be finite.
We can assume :

I V = Cn ;

I S = {1, . . . ,m} ;

I ∀s, Ls = 〈., fs〉, for some fs ∈ Cn.
(〈., .〉 is the usual hermitian product.)

“measurement vectors”

Reconstruct x ∈ Cn from (|〈x , fk〉|)1≤k≤m ?
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Reconstruct x ∈ Cn from (|〈x , fk〉|)1≤k≤m ?

Theorem (Uniqueness for generic measurements)

If m ≥ 4n − 4, then, for generic vectors f1, . . . , fm, uniqueness
holds :

∀x , y ∈ Cn, (∀k , |〈x , fk〉| = |〈y , fk〉|) ⇒ (x = y).

“Generic” means that the set of m-tuples (f1, . . . , fm) for
which the property holds is open and dense in (Cn)m.

[Balan, Casazza, and Edidin, 2006]
[Conca, Edidin, Hering, and Vinzant, 2015]
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Reconstruct x ∈ Cn from (|〈x , fk〉|)1≤k≤m ?

Generic uniqueness : idea of proof

Principle : dimension counting.(
Not all x are uniquely determined by (|〈x , fk〉|)1≤k≤m.

)
⇐⇒

(
There exist x , y ∈ Cn such that

∀k ≤ m, |〈x , fk〉| = |〈y , fk〉|.

)

⇐⇒

There exist x , y ∈ Cn and φ1, . . . , φm ∈ R such
that

∀k ≤ m, 〈x , fk〉 = e iφk 〈y , fk〉.
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Idea of proof (continued)(
There exist x , y ∈ Cn and φ1, . . . , φm ∈ R such that

∀k ≤ m, 〈x , fk〉 = e iφk 〈y , fk〉.

)

⇐⇒

(f1, . . . , fm) ∈
⋃

x ,y∈Cn

φ1,...,φm∈R

{x−e iφ1y}⊥×· · ·×{x−e iφmy}⊥


dimR = m(2n − 2)

dimR = 2n + 2n + m

The set of all (f1, . . . , fm) for which uniqueness does not hold
is a (union of) manifold(s), with dimension at most
2n + 2n + m + m(2n − 2) = 2mn + 4n −m.

2mn + 4n −m < 2mn = dimR((Cn)m) when m ≥ 4n + 1.
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Reconstruct x ∈ Cn from (|〈x , fk〉|)1≤k≤m ?

When m ≥ 4n − 4, generic measurements ⇒ uniqueness.

Can we have uniqueness with less measurements than 4n − 4 ?

I If m < 4n − O(log(n)), uniqueness never holds.

[Heinosaari, Mazzarella, and Wolf, 2013]

I For some n, when m < 4n − 4, uniqueness never holds.

[Conca, Edidin, Hering, and Vinzant, 2015]

I For some n, uniqueness can be reached with m < 4n − 4.

[Vinzant, 2015]
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Summary

I m ∼ 4n measurements generically ensure uniqueness.

I This is essentially optimal.

What about stability ?

We are never given the exact value of (|〈x , fk〉|)1≤k≤m.
In this case, can we do approximate reconstruction ?

For example, is reconstruction Lipschitz ?

∀x , y ∈ Cn, ||x−y ||2 ≤ C

∣∣∣∣∣
∣∣∣∣∣
(
|〈x ,f1〉|

...
|〈x ,fm〉|

)
−

(
|〈y ,f1〉|

...
|〈y ,fm〉|

)∣∣∣∣∣
∣∣∣∣∣
2

?

(for some C > 0)
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Stability

Theorem

When uniqueness holds, reconstruction is always Lipschitz.

[Balan and Zou, 2016]

Problem : the Lipschitz constant can be terrible.
In particular, it can depend on n and m.
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→ Stronger assumptions on f1, . . . , fm ?

We assume that the fk are chosen at random, independently,
according to normal distributions :

fk
i .i .d .∼ NC(0, Idn), k = 1, . . . ,m.

Theorem

There exist constants α, γ,C > 0 such that, if

m ≥ αn,

reconstruction is C -Lipschitz with proba at least 1−O(e−γm).

[Candès and Li, 2014]
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Summary

For generic/random fk ’s, the problem is well-posed.

I Uniqueness holds “generically”.

I Stability holds with high probability.

But in applications, measurements are neither generic nor
random.

→ Is the phase retrieval problem still well-posed ?
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Non-generic/random phase retrieval

Is the phase retrieval problem still well-posed ?

Answering this question is difficult.
Only a handful of particular cases can be precisely studied.

We will discuss the main one : the Fourier transform.
(→ X-ray imaging)
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Phase retrieval for the Fourier transform

Let x ∈ Cn be a vector.
Its (semi)discrete Fourier transform is

x̂ : ω ∈ [0; 2π[ → x̂(ω) =
n−1∑
k=0

xke
−ikω

The corresponding phase retrieval problem is

Reconstruct x ∈ Cn from (|x̂(ω)|)ω∈[0;2π[ ?
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Reconstruct x ∈ Cn from (|x̂(ω)|)ω∈[0;2π[ ?

For all ω, |x̂(ω)|2 =

∣∣∣∣∣
n−1∑
k=0

xke
−ikω

∣∣∣∣∣
2

=

(
n−1∑
k=0

xke
−ikω

)(
n−1∑
k=0

xke
+ikω

)

= Px(e−iω)Px

(
1

e−iω

)
,

where

Px(X ) =
n−1∑
k=0

xkX
k .
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Reconstruct x ∈ Cn from (|x̂(ω)|)ω∈[0;2π[ ?

(
Knowing (|x̂(ω)|)ω∈[0;2π[

)
⇐⇒

(
Knowing Px(X )Px(1/X )

)
Let us write Px(X ) = c

∏n−1
s=1(X − zs).

Then Px(X )Px(1/X ) = c̃X−(n−1)
∏n−1

s=1(X − zs)(X − 1
zs

).

From |x̂ |, we can determine z1, . . . , zn−1
up to the transformation z → 1

z
.
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Phase retrieval for the Fourier transform

Summary

From (|x̂(ω)|)ω∈[0;2π[, we can recover Px (and hence x)
up to a “flipping” of each root.

Since there are n − 1 roots, for most vectors x ,

there are 2n−1 vectors y such that |x̂ | = |ŷ |.

⇒ No uniqueness.
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Phase retrieval for the Fourier transform

In higher dimensions

And in dimension d ≥ 2 ?

We can define a “dimension d” Fourier transform, on vectors
x ∈ Cnd , and look at the same phase retrieval problem.

The picture is different :

“Almost all” x are uniquely determined from |x̂ |.

But reconstruction is not Lipschitz.
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Other problems than the Fourier transform ?

Other measurement systems can be analyzed, but they need to
have special properties.

(“Special properties” : typically, a relation with harmonic
analysis that allows to use similar tools as for Fourier.)

For these other measurement systems, the problem is

I possibly “less ill-posed” than for Fourier ;

I typically “more ill-posed” than for random measurements.

→ We will briefly discuss the wavelet transform case.
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Phase retrieval for the wavelet transform

W : L2(R) → (L2(R))Z

f → Wf = (f ? ψj)j∈Z,

where (ψj)j∈Z is a (specific) family of band-pass filters.

j = 0

j = −1

j = −2

Reconstruct f ∈ L2(R) from |Wf | = (|f ? ψj |)j∈Z ?



Non-generic phase retrieval problems 32 / 34

Phase retrieval for the wavelet transform

To be able to analyze this problem, we need an assumption on
the filters : we need them to be Cauchy wavelets.

Reason :
If the ψj ’s are Cauchy wavelets, then, for each j , f ? ψj is the
restriction onto a line of some specific holomorphic function.

Theorem (Mallat and Waldspurger [2015])

We assume the filters to be Cauchy wavelets.

I Uniqueness holds.

I Reconstruction is not Lipschitz, but “locally stable”.
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Phase retrieval for the short-time Fourier transform

W : L2(R) → (L2(R))Z

f → Wf = (ŵnf )n∈Z,

with w a compactly-supported window, wn its translation by n.

Reconstruct f from |Wf | = (|ŵnf |)n∈Z ?
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Phase retrieval for the short-time Fourier transform

W : L2(R) → (L2(R))Z

f → Wf = (ŵnf )n∈Z,

with w a compactly-supported window, wn its translation by n.

Reconstruct f from |Wf | = (|ŵnf |)n∈Z ?

For Gaussian windows, similar results as for wavelets :

I Uniqueness holds.

I Reconstruction is not Lipschitz, but “locally stable”.

[Alaifari, Daubechies, Grohs, and Yin, 2016]
[Grohs and Rathmair, 2017]
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Phase retrieval for the short-time Fourier transform

W : L2(R) → (L2(R))Z

f → Wf = (ŵnf )n∈Z,

with w a compactly-supported window, wn its translation by n.

Reconstruct f from |Wf | = (|ŵnf |)n∈Z ?

For general windows,

I Almost all signals are uniquely determined.

I Stability unknown.

[Jaganathan, Eldar, and Hassibi, 2016]
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Summary

I We have introduced a family of inverse problems.

I We have discussed two applications.

I We have discussed the well-posedness of these problems.
I In a generic/random setting, well-posed.
I In a non-generic setting, possibly ill-posed ; difficult to

study.

This afternoon

I Focus on the generic/random setting.

I Discuss reconstruction algorithms.
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