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Inverse problems

Inverse problems are problems of the form :

Reconstruct an “unknown object”
from some set of “measurements” 7

In this mini-course, we will discuss a family of inverse
problems, called phase retrieval problems.
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Outline

This morning : introduction to phase retrieval problems.
» Definition, motivations
» When is there hope to solve a phase retrieval problem ?

» First case :  “generic’ problems
» Second case : “non-generic” problems

This afternoon : a first family of reconstruction algorithms.

Tomorrow : a second family of reconstruction algorithms.
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Phase retrieval problems : definition
Let

» V be a fixed complex vector space;

» x be an unknown element of V;

» (Ls)ses be a (known) family of linear forms on V.

The corresponding linear inverse problem would be :

Reconstruct x € V from (Ls(x))ses ?

sES -

Typically “easy” to solve.
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Phase retrieval problems : definition

Here, we assume that we do not have access to the phase of
Ls(x).
— We have only its modulus.

General form of a phase retrieval problem :

[ Reconstruct x € V from (|Ls(x)|)ses ?

(Called “phase retrieval” because, if you can retrieve the
phases, you can easily reconstruct x by solving the linear
inverse problem.)
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Global phase ambiguity

Reconstruct x € V from (|Ls(x)|)ses ?

Let u € C have modulus 1. For any s € S,
Lo(w0)] = [uL()
= [Ls(x)]-
= It is not possible to distinguish x from ux.

We only aim at recovering x up to multiplication by a unitary
complex number.
We call it reconstruction up to a global phase.
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First motivation : X-ray imaging
Screen

Object
on a plate
Electromagnetic C
waves
Diffracted

waves

[Schechtman, Eldar, Cohen, Chapman, Miao, and Segev, 2015]
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First motivation : X-ray imaging
We aim at recovering the support function of the object :
f. R*> — C
(x,y) — 1 if point (x,y) of the plate is

masked by the object,
(x,y) — 0 otherwise.
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First motivation : X-ray imaging
We aim at recovering the support function of the object :
f: R — C
(x,y) — 1 if point (x,y) of the plate is

masked by the object,
(x,y) — 0 otherwise.

The diffracted wave, when it arrives to the screen, can be
described by a function Ficeen : R? — C.

This Fscreen is (approximately) the Fourier transform of f :

[ F screen — 7? ]
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First motivation : X-ray imaging

For any (x,y) € R?, it is possible to measure |Fscreen(X, y)l,
but not phase(Fscreen(X, ¥))-
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First motivation : X-ray imaging

For any (x,y) € R?, it is possible to measure |Fscreen(X, y)l,
but not phase(Fscreen(X, ¥))-

Recall that Fuyeen = f.

Reconstruct a compactly supported f
from (£ (x, ¥)1)x.y)er2 ?

This is a phase retrieval problem.
(The most important one, historically and in applications.)
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Second motivation : audio processing

Goal of audio processing : develop algorithms to solve tasks
involving sound recordings, that would be too difficult or
tedious for human persons to perform.



Definition and applications 10 / 34

Second motivation : audio processing

Goal of audio processing : develop algorithms to solve tasks
involving sound recordings, that would be too difficult or
tedious for human persons to perform.

Main difficulty : an audio signal is a complicated object.

It can be represented by a
function

W‘ Aok
fiR-R %' ,‘ “““’

usually with no obvious
“structure”.
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Second motivation : audio processing

Idea : use an intermediate representation, easier to analyze.
(f:R—-R) — (|WFf]:R" xR —R").

|WF| : modulus of the “short-time Fourier transform” or
“wavelet transform” of f.

*“ -

f:R>R |WF| : R* x R — R+
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Second motivation : audio processing

Typical pipeline of an algorithm

. ‘ Wf| som<1na>lysis

When the expected result is a new audio signal,

. | Wf| someﬂilysis | Wg| recorﬂction
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Second motivation : audio processing

Typical pipeline of an algorithm

. ‘ Wf| som<1na>lysis

When the expected result is a new audio signal,

. | Wf| someﬂilysis

reconstruction
—

This step is a phase retrieval problem.
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Reconstruct x € V from (|Ls(x)|)ses ?

When can we hope to solve this problem ?

At least two possible issues :

» No uniqueness of the reconstruction :

There exist x # y such that Vs, |Ls(x)| = |Ls(y)|
» No stability

There exist x % y such that Vs, |Ls(x)| =~ |Ls(y)]|-

If one of these issues arises, we say the the problem is ill-posed.
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For a given a family of linear forms (Ls)scs, can we determine
whether there is uniqueness and stability ?



Random phase retrieval problems 14/ 34

For a given a family of linear forms (Ls)scs, can we determine
whether there is uniqueness and stability ?
— It is difficult.
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For a given a family of linear forms (Ls)scs, can we determine
whether there is uniqueness and stability ?
— It is difficult.

Two main situations

1. The Ls are “generic” or random, chosen according to a
simple probability law.
» Analysis is doable.
» Uniqueness and stability tend to hold.
2. The Lg are deterministic, imposed by a specific
application.
» Analysis is usually difficult or impossible.
» Uniqueness and stability may fail to hold.
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Generic / random case, in finite dimension

Reconstruct x € V from (|Ls(x)|)ses ?

To simplify, we assume dim(V') and Card(S) to be finite.
We can assume :

» V=0C";

» S={1,...,m};

» Vs, Lg = (., f;), for some f; € C".
((.,.) is the usual hermitian product.)
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Generic / random case, in finite dimension

[ Reconstruct x € V from (|Ls(x)|)ses ?

To simplify, we assume dim(V') and Card(S) to be finite.
We can assume :

» V =0C";
> S={1,....m}; “measurement vectors”
» Vs, L ( , for some £, € C".

((,.) is the usuaI hermitian product.)

Reconstruct x € C" from (|(x, fi)|)1<k<m ?
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Reconstruct x € C" from (|(x, fi)|)1<k<m ?

Theorem (Uniqueness for generic measurements)

If m > 4n — 4, then, for generic vectors fi,. .., f,, uniqueness
holds :

Vx,y e C (Vh [ )l =y, ) = (x=y)

“Generic” means that the set of m-tuples (fi,. .., fy,) for
m

which the property holds is open and dense in (C")™.

[Balan, Casazza, and Edidin, 2006]
[Conca, Edidin, Hering, and Vinzant, 2015]
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Reconstruct x € C" from (|(x, fi)|)1<k<m ?

Generic uniqueness : idea of proof

Principle : dimension counting.

< Not all x are uniquely determined by (|(x, fk>|)1§k§m.>

<There exist x, y € C" such that >
<~
Vk < m, [{x, )| = [{y, fi) |-

There exist x,y € C" and ¢1,...,¢0n € R such

; that

Vk S m, <X7 fk) = e’.¢k<y’ ﬂ()
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Idea of proof (continued)

There exist x,y € C" and ¢1,..., ¢, € R such that
ng m, <X7 fk> :ei¢k<.y7 fk)
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Idea of proof (continued)

There exist x,y € C" and ¢1,..., ¢, € R such that
Vk<m, (x—e“y f)=0.
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Idea of proof (continued)

There exist x,y € C" and ¢1,..., ¢, € R such that
Vk<m, (x—e“y f)=0.

< (ﬂ?"';fm) € U {X—ei(bl_y}J‘x...X{X_eid)my}l_
x,y€Cr
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Idea of proof (continued)

There exist x,y € C" and ¢1,..., ¢, € R such that
Vk<m, (x—e%y f)=0.

e | (A f) e | {x—ePy}xe o {x—emy}t
x,yeCn

P1pee,ImER dimp = m(2n —2)

dimg =2n+2n+m
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Idea of proof (continued)

There exist x,y € C" and ¢1,..., ¢, € R such that
Vk<m, (x—e“y f)=0.
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The set of all (f,. .., fn) for which uniqueness does not hold
is a (union of) manifold(s), with dimension at most
2n+2n+m+m(2n—2)=2mn+4n—m
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Idea of proof (continued)

There exist x,y € C" and ¢1,..., ¢, € R such that
Vk<m, (x—e“y f)=0.

e | (A f) e | {x—ePy}xe o {x—emy}t

x,yeCn
P1pee,ImER dimp = m(2n —2)

dimg =2n+2n+m

The set of all (f,. .., fn) for which uniqueness does not hold
is a (union of) manifold(s), with dimension at most
2n+2n+m+m(2n—2)=2mn+4n—m

2mn+4n — m < 2mn = dimg((C")™) when m > 4n + 1.
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Reconstruct x € C" from (|(x, fi)|)1<k<m ?

When m > 4n — 4, generic measurements = uniqueness.

Can we have uniqueness with less measurements than 4n — 47

» If m < 4n — O(log(n)), uniqueness never holds.
[Heinosaari, Mazzarella, and Wolf, 2013]

» For some n, when m < 4n — 4, uniqueness never holds.
[Conca, Edidin, Hering, and Vinzant, 2015]

» For some n, uniqueness can be reached with m < 4n — 4.
[Vinzant, 2015]



Random phase retrieval problems 20 / 34

Summary
» m ~ 4n measurements generically ensure uniqueness.

» This is essentially optimal.
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What about stability ?

We are never given the exact value of (|(x, fi)|)i<k<m-
In this case, can we do approximate reconstruction ?
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Summary
» m ~ 4n measurements generically ensure uniqueness.
» This is essentially optimal.

What about stability ?

We are never given the exact value of (|(x, fi)|)i<k<m-
In this case, can we do approximate reconstruction ?

For example, is reconstruction Lipschitz ?

Vx,y € C", |Ix—y|. < C

( [(x, ) ) < [y, h)] )
(%, fon)| (y fom)]|

2

(for some C > 0)
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Stability

Theorem

When uniqueness holds, reconstruction is always Lipschitz.

[Balan and Zou, 2016]
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Stability

Theorem

When uniqueness holds, reconstruction is always Lipschitz.

[Balan and Zou, 2016]

Problem : the Lipschitz constant can be terrible.
In particular, it can depend on n and m.
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— Stronger assumptions on f,..., f,?

We assume that the f, are chosen at random, independently,
according to normal distributions :

f " NG(0,1d,), k=1,...,m.

Theorem
There exist constants «,~y, C > 0 such that, if

m > an,

reconstruction is C-Lipschitz with proba at least 1 — O(e™"™).

[Candeés and Li, 2014]
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Summary

For generic/random f's, the problem is well-posed.
» Uniqueness holds “generically”.
» Stability holds with high probability.
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Summary

For generic/random f's, the problem is well-posed.
» Uniqueness holds “generically”.
» Stability holds with high probability.

But in applications, measurements are neither generic nor
random.

— Is the phase retrieval problem still well-posed ?
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Non-generic/random phase retrieval
Is the phase retrieval problem still well-posed ?

Answering this question is difficult.
Only a handful of particular cases can be precisely studied.

We will discuss the main one : the Fourier transform.
(— X-ray imaging)
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Phase retrieval for the Fourier transform
Let x € C" be a vector.

Its (semi)discrete Fourier transform is

Rrwelo2r] — X(w)= Zxke_ikw

The corresponding phase retrieval problem is

Reconstruct x € C" from (|X(w)|)we[o:2x] 7
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Reconstruct x € C" from (|X(w)|)wefo;2x] ?

where
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Reconstruct x € C" from (|X(w)|)wefo;2x] ?

(Knowing ([%(w)])ucioan)
= (Knowing PX(X)R(1/X))
Let us write Py (X) = c[[7—1(X — z).

Then P (X)Py(1/X) = eX~ DI H(X — z)(X — 2).

s=1

From |X|, we can determine z;,...,2z, 1
up to the transformation z — %
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Phase retrieval for the Fourier transform

Summary

From (|X(w)]|)weo:2r[, We can recover P, (and hence x)
up to a “flipping” of each root.

Since there are n — 1 roots, for most vectors x,

there are 2771 vectors y such that |%] = [J].

= No uniqueness.
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Phase retrieval for the Fourier transform

In higher dimensions

And in dimension d > 27

We can define a “dimension d" Fourier transform, on vectors
x € C™, and look at the same phase retrieval problem.

The picture is different :
“Almost all” x are uniquely determined from |%|.

But reconstruction is not Lipschitz.
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Other problems than the Fourier transform ?

Other measurement systems can be analyzed, but they need to
have special properties.

(“Special properties” : typically, a relation with harmonic
analysis that allows to use similar tools as for Fourier.)

For these other measurement systems, the problem is
» possibly “less ill-posed” than for Fourier;

» typically “more ill-posed” than for random measurements.
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Other problems than the Fourier transform ?

Other measurement systems can be analyzed, but they need to
have special properties.

(“Special properties” : typically, a relation with harmonic
analysis that allows to use similar tools as for Fourier.)

For these other measurement systems, the problem is
» possibly “less ill-posed” than for Fourier;

» typically “more ill-posed” than for random measurements.

— We will briefly discuss the wavelet transform case.
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Phase retrieval for the wavelet transform

W [*(R) — (L2(R))Z
f = Wf=(fxv{j)jez,

where (v);ez is a (specific) family of band-pass filters.

j=0 j=-2

Reconstruct f € L?(R) from |WF| = (|f x ¢j|)jez? ]
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Phase retrieval for the wavelet transform

To be able to analyze this problem, we need an assumption on
the filters : we need them to be Cauchy wavelets.

Reason :
If the 9);'s are Cauchy wavelets, then, for each j, f x1; is the
restriction onto a line of some specific holomorphic function.

Theorem (Mallat and Waldspurger [2015])

We assume the filters to be Cauchy wavelets.
» Uniqueness holds.
» Reconstruction is not Lipschitz, but “locally stable”.



Non-generic phase retrieval problems 33/ 34

Phase retrieval for the short-time Fourier transform

W: 2R) -  (L2(R))

=

f = WFf=(wyf)nez,

with w a compactly-supported window, w,, its translation by n.

Reconstruct f from |Wf| = (]Wn\f\)nez?
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Phase retrieval for the short-time Fourier transform

W: 2R) -  (L2(R))

=

f = WFf=(wyf)nez,

with w a compactly-supported window, w,, its translation by n.

Reconstruct f from |Wf| = (]Wn\f\)nez?

For Gaussian windows, similar results as for wavelets :
» Uniqueness holds.
» Reconstruction is not Lipschitz, but “locally stable”.

[Alaifari, Daubechies, Grohs, and Yin, 2016]
[Grohs and Rathmair, 2017]
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Phase retrieval for the short-time Fourier transform

W: 2R) -  (L2(R))

=

f = WFf=(wyf)nez,

with w a compactly-supported window, w,, its translation by n.

Reconstruct f from |Wf| = (]Wn\f\)nez?

For general windows,
» Almost all signals are uniquely determined.
» Stability unknown.

[Jaganathan, Eldar, and Hassibi, 2016]
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Summary

» We have introduced a family of inverse problems.
» We have discussed two applications.

» We have discussed the well-posedness of these problems.

» In a generic/random setting, well-posed.
» In a non-generic setting, possibly ill-posed ; difficult to
study.

This afternoon

» Focus on the generic/random setting.

» Discuss reconstruction algorithms.
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