Algorithms for phase retrieval problems Part II

Irène Waldspurger
CNRS et CEREMADE (Université Paris Dauphine) Équipe MOKAPLAN (INRIA)

11 décembre 2017
Journées de géométrie algorithmique
Aussois

Introduction

Setting

Phase retrieval in finite dimension :

Reconstruct $x \in \mathbb{C}^{n}$ from $\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m}$?

(The f_{1}, \ldots, f_{m} are known elements of \mathbb{C}^{n}.)

Setting

Phase retrieval in finite dimension :

$$
\text { Reconstruct } x \in \mathbb{C}^{n} \text { from }\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m} \text { ? }
$$

(The f_{1}, \ldots, f_{m} are known elements of \mathbb{C}^{n}.)
We assume the f_{k} 's to be random realizations of independent normal distributions :

$$
f_{k} \stackrel{i . i . d .}{\sim} \mathcal{N}_{\mathbb{C}}\left(0, \operatorname{Id}_{n}\right), \quad k=1, \ldots, m .
$$

When $m \geq \alpha n$, for some fixed constant α, the phase retrieval problem is well-posed with high probability.

Which reconstruction algorithms can we use?
We want algorithms that have the two following properties :

1. They are practical to use.

- Reasonably fast.
- Stable to noise.
- (Ideally,) not too complex to implement.

2. It is possible to rigorously prove that they succeed (with high probability).

Reconstruct $x \in \mathbb{C}^{n}$ from $\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m}$?

This is a non-convex problem.

To oversimplify, problems that involve only convex constraints can be efficiently solved.

But for $k \leq m, b_{k} \in \mathbb{R}^{+}$, the constraint

$$
\left|\left\langle x, f_{k}\right\rangle\right|=b_{k},
$$

defines a non-convex set in \mathbb{C}^{n}.

Traditional algorithms

Several phase retrieval algorithms were proposed from the 70s.
They typically relied on simple heuristics.
Numerically, they were shown to perform well in some cases.
But because of non-convexity, they could also get stuck in "local minima" and fail to solve the problem.

No theoretical understanding of when they succeeded and when they did not.

Convexification methods

The picture changed with the introduction of convexification methods.

Principle

- Approximate the problem by a convex one ("easy" to solve).
- Prove that the original problem and the approximated one actually have the same solution.

We will present two convexification methods:

- PhaseLift (~2011)
- PhaseMax (~2015)

PhaseLift

Lifting

Reconstruct x
from $\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{k \leq m}$.

Reconstruct $x x^{*}$ from
$\left(\operatorname{Tr}\left(f_{k}^{*} x x^{*} f_{k}\right)\right)_{k \leq m}$.

Reconstruct $x x^{*}$ from

$$
=\operatorname{Tr}\left(x x^{*} f_{k} f_{k}^{*}\right) \Longleftrightarrow \quad\left(\quad\left(\operatorname{Tr}\left(f_{k}^{*} x x^{*} f_{k}\right)\right)\right)_{k \leq m}
$$

$$
=\left(f_{k}^{*} x\right)\left(x^{*} f_{k}\right) \quad\left(x^{*} \stackrel{\text { def }}{=} \overline{x^{T}}\right)
$$

Reconstruct $X \in \mathbb{C}^{n \times n}$ from

$$
\left(\operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)\right)_{k \leq m},
$$

with X positive, hermitian, rank 1.

Lifting

Reconstruct $X \in \mathbb{C}^{n \times n}$ from

$\left(\operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)\right)_{k \leq m}$,
with X positive, hermitian, rank 1 .

Find $X \in \mathcal{H}_{n}$
s.t. $\operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \quad \forall k$
$X \succeq 0$
$\operatorname{rank}(X)=1$.

Summary : a change of variable $\left(x \rightarrow x x^{*}=X\right)$ has turned the modulus constraint into a linear constraint.

Not specific to phase retrieval (e.g. MaxCut).

Lifting

Find $X \in \mathcal{H}_{n}$

$$
\begin{array}{lll}
\text { s.t. } & \operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \quad \forall k \longrightarrow & \text { convex } \\
& X \succeq 0 & \text { convex } \\
& \operatorname{rank}(X)=1 . \quad \text { non-convex }
\end{array}
$$

The problem is still non-convex :

$$
\left\{X \in \mathcal{H}_{n}, \operatorname{rank}(X)=1\right\} \quad \text { is not convex. }
$$

But methods exist to deal with such constraints.

Digression : sparse recovery
Imagine you want to find $x \in \mathbb{R}^{n}$, solution of

Minimize $\operatorname{Card}\left\{i, x_{i} \neq 0\right\}$ under condition $\mathcal{L}(x)=a$,
with \mathcal{L} linear and a known.
This problem is not convex.
Classical heuristic : replace "Card $\left\{i, x_{i} \neq 0\right\}$ " by the ℓ^{1}-norm.

Minimize $\|x\|_{1}$ under condition $\mathcal{L}(x)=a$,

The resulting problem is convex.

Convexification

Same idea : replace the rank condition by a convex surrogate.
A good convex surrogate is the nuclear norm :

$$
\|X\|_{1}=\sum_{k=1}^{n}\left|\lambda_{k}(X)\right|
$$

where $\lambda_{1}(X), \ldots, \lambda_{n}(X)$ are the eigenvalues of X.

Find $X \in \mathcal{H}_{n}$
s.t. $\operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \quad \forall k$
$X \succeq 0$
$\operatorname{rank}(X)=1$.

Convexification

Same idea : replace the rank condition by a convex surrogate.
A good convex surrogate is the nuclear norm :

$$
\|X\|_{1}=\sum_{k=1}^{n}\left|\lambda_{k}(X)\right|
$$

where $\lambda_{1}(X), \ldots, \lambda_{n}(X)$ are the eigenvalues of X.

Find $X \in \mathcal{H}_{n} \quad$ Minimize $\|X\|_{1}$
s.t. $\operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \quad \forall k$
$X \succeq 0$
$\operatorname{rank}(X)=1$.

Convexification

$$
\begin{gathered}
\text { Minimize }\|X\|_{1}=\operatorname{Tr}(X) \\
\text { s.t. } \operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \quad \forall k \\
X \succeq 0
\end{gathered}
$$

This problem is convex. We can solve it in polynomial time.
This problem is called PhaseLift.
[Chai, Moscoso, and Papanicolaou, 2011]
[Candès, Eldar, Strohmer, and Voroninski, 2011]

Convexification

$$
\begin{array}{cl}
\text { Minimize } & \|X\|_{1}=\operatorname{Tr}(X) \\
\text { s.t. } & \operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \quad \forall k \\
& X \succeq 0
\end{array}
$$

This problem is convex. We can solve it in polynomial time.
This problem is called PhaseLift.
[Chai, Moscoso, and Papanicolaou, 2011]
[Candès, Eldar, Strohmer, and Voroninski, 2011]
This problem is only an approximation of the original problem.
Will its solution be the same as the original solution?

Is the solution the same as the original one?

Theorem (PhaseLift works)

There exist constants $\alpha, \gamma>0$ such that, when

$$
m \geq \alpha n
$$

the solution of the approximated problem is the same as the solution of the initial one, with probability at least $1-O\left(e^{-\gamma m}\right)$.
[Candès, Strohmer, and Voroninski, 2013]
[Candès and Li, 2014]

Idea of proof

(Original problem)

Find X

$$
\begin{array}{ll}
\text { s.t. } & \operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \forall k \\
& X \succeq 0 \\
& \operatorname{rank}(X)=1
\end{array}
$$

(Convex approximation)
Minimize $\operatorname{Tr}(X)$

$$
\begin{array}{ll}
\text { s.t. } & \operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \forall k \\
& X \succeq 0 .
\end{array}
$$

Let $X_{\text {true }}=x_{\text {true }} X_{\text {true }}^{*}$ be the solution of the original problem.
Let us show that it is a solution of the approximated problem.
To simplify, we assume $X_{\text {true }}=e_{1} e_{1}^{*}=\left(\begin{array}{ccc}1 & 0 & \ldots \\ 0 & 0 \\ \vdots & & \vdots \\ 0 & \ldots & 0\end{array}\right)$.

$$
X_{\text {true }}=e_{1} e_{1}^{*} \text { solution of } \left\lvert\, \begin{gathered}
\text { Minimize } \\
\operatorname{Tr}(X)=\left\langle X, \operatorname{Id}_{n}\right\rangle \\
\text { s.t. } \operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \quad \forall k \\
X \succeq 0 \quad ?
\end{gathered}\right.
$$

$$
\{X \succeq 0\}
$$

$X_{\text {true }}$ solution \Longleftrightarrow
$-\mathrm{Id}_{n} \in$ Normal cone to the constraint set at $X_{\text {true }}$.

Dual certificate

We want to show :
$-\mathrm{Id}_{n} \in$ Normal cone to the constraint set at $X_{\text {true }}=e_{1} e_{1}^{*}$. with Constraint set $=\{X \succeq 0\} \cap\left\{\operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \forall k\right\}$.

Dual certificate

We want to show :
$-\mathrm{Id}_{n} \in$ Normal cone to the constraint set at $X_{\text {true }}=e_{1} e_{1}^{*}$. with Constraint set $=\{X \succeq 0\} \cap\left\{\operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \forall k\right\}$.

The normal cone of the intersection contains the sum of the normal cones of each set :

$$
\left\{\left(\begin{array}{l}
0 \ldots 0 \\
\vdots M \\
0
\end{array}\right), M \preceq 0\right\}+\left\{\sum_{k} c_{k} f_{k} f_{k}^{*}, c_{1}, \ldots, c_{m} \in \mathbb{R}\right\} .
$$

Dual certificate

We want to show :
$-\mathrm{Id}_{n} \in$ Normal cone to the constraint set at $X_{\text {true }}=e_{1} e_{1}^{*}$. with Constraint set $=\{X \succeq 0\} \cap\left\{\operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}, \forall k\right\}$.

The normal cone of the intersection contains the sum of the normal cones of each set :

$$
\left\{\left(\begin{array}{c}
0 \ldots \\
\vdots \\
\vdots \\
0
\end{array}\right), M \preceq 0\right\}+\left\{\sum_{k} c_{k} f_{k} f_{k}^{*}, c_{1}, \ldots, c_{m} \in \mathbb{R}\right\} .
$$

Let us find $M \preceq 0$ and $c_{1}, \ldots, c_{m} \in \mathbb{R}$ such that

$$
-\operatorname{Id}_{n}=\left(\begin{array}{c}
0 \ldots \\
\vdots \\
\vdots
\end{array}\right)+\sum_{k \leq m} c_{k} f_{k} f_{k}^{*} .
$$

We want to find $M \preceq 0$ and $c_{1}, \ldots, c_{m} \in \mathbb{R}$ such that

$$
-\operatorname{Id}_{n}=\left(\begin{array}{c}
0 \ldots \\
\vdots \\
0
\end{array}\right)+\sum_{k \leq m} c_{k} f_{k} f_{k}^{*}
$$

We want to find $M \preceq 0$ and $c_{1}, \ldots, c_{m} \in \mathbb{R}$ such that

$\underset{\text { is actually enough) }}{(\text { Approximate equality }}-\operatorname{Id}_{n} \underset{\approx}{\approx}\left(\begin{array}{cc}0 \ldots & 0 \\ \vdots & \mathrm{M}\end{array}\right)+\sum_{k \leq m} c_{k} f_{k} f_{k}^{*}$.

We want to find $M \preceq 0$ and $c_{1}, \ldots, c_{m} \in \mathbb{R}$ such that
$\begin{gathered}\text { (Approximate equality } \\ \text { is actually enough) }\end{gathered}-\operatorname{Id}_{n} \underset{\approx}{\approx}\left(\begin{array}{cc}0 \ldots & 0 \\ \vdots & \mathrm{M}\end{array}\right)+\sum_{k \leq m} c_{k} f_{k} f_{k}^{*}$.
(Idea) $\quad\left(\begin{array}{cccc}0 & 0 & \cdots & 0 \\ 0 & -\frac{1}{2} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \ldots & -\frac{1}{2}\end{array}\right)-\frac{1}{2 m} \sum_{k \leq m}\left|\left\langle e_{1}, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{*}$.

We want to find $M \preceq 0$ and $c_{1}, \ldots, c_{m} \in \mathbb{R}$ such that
$\begin{gathered}\text { (Approximate equality } \\ \text { is actually enough) }\end{gathered}-\operatorname{Id}_{n} \underset{\approx}{\approx}\left(\begin{array}{cc}0 \ldots & 0 \\ \vdots & \mathrm{M}\end{array}\right)+\sum_{k \leq m} c_{k} f_{k} f_{k}^{*}$.
(Idea) $\begin{array}{r}\left(\begin{array}{cccc}0 & 0 & \cdots & 0 \\ 0 & -\frac{1}{2} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & -\frac{1}{2}\end{array}\right)-\frac{1}{2 m} \sum_{k \leq m} \underbrace{\left|\left\langle e_{1}, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{*} .} \\ =\left(\begin{array}{ccc}2 & \cdots & 0 \\ 0 & 1 & \ddots \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots\end{array}\right) \text { in expectation }\end{array}$

We want to find $M \preceq 0$ and $c_{1}, \ldots, c_{m} \in \mathbb{R}$ such that
$\begin{gathered}\text { (Approximate equality } \\ \text { is actually enough) }\end{gathered}-\operatorname{Id}_{n} \underset{\approx}{\approx}\left(\begin{array}{cc}0 \ldots & 0 \\ \vdots & \mathrm{M}\end{array}\right)+\sum_{k \leq m} c_{k} f_{k} f_{k}^{*}$.

We want to find $M \preceq 0$ and $c_{1}, \ldots, c_{m} \in \mathbb{R}$ such that
$\begin{gathered}\text { (Approximate equality } \\ \text { is actually enough) }\end{gathered}-\operatorname{Id}_{n} \underset{\approx}{\approx}\left(\begin{array}{cc}0 \ldots & 0 \\ \vdots & \mathrm{M}\end{array}\right)+\sum_{k \leq m} c_{k} f_{k} f_{k}^{*}$.

End of the proof

We have constructed an (approximate) dual certificate.
This shows that the solution $X_{\text {true }}=e_{1} e_{1}^{*}$ of the original problem is also a solution of the approximated problem.

With the dual certificate, we can also prove that the solution of the approximated problem is unique.

So with high probability, PhaseLift works.

PhaseLift is stable to noise

$$
\begin{array}{cl}
\text { Minimize } & \operatorname{Tr}(X) \\
\text { s.t. } & \operatorname{Tr}\left(X f_{k} f_{k}^{*}\right)=b_{k}+\epsilon_{k}, \quad \forall k \\
& X \succeq 0 \quad ?
\end{array}
$$

For simplicity, assume $\|x\|_{2}=1$.

Theorem (Candès and Li [2014])

Under the same hypotheses as previously, PhaseLift allows to recover a vector $x_{\text {noise }}$ such that, with high probability,

$$
\left\|x_{\text {true }}-x_{\text {noise }}\right\|_{2} \leq \text { constant } \times \frac{\|\epsilon\|_{1}}{m}
$$

Possible extensions

- The probability distribution of the f_{k} 's is something else than a normal law.
\rightarrow "Coded diffraction patterns"
[Candès, Li, and Soltanolkotabi, 2015]
[Gross, Krahmer, and Kueng, 2015]
- The noise contains some very large entries.
[Hand, 2017]

Computational complexity

It depends on which algorithm we use to solve PhaseLift.
We assume $m=O(n)$; let ϵ be the precision.

- Interior-point solvers:

$$
O\left(n^{4.5} \log \left(\frac{1}{\epsilon}\right)\right)
$$

- First-order methods:

$$
O\left(\frac{n^{3}}{\epsilon}\right)
$$

The problem is that we have lifted.
The matrix X has n^{2} entries, while x had only n.

How to make it faster?

- Perform lifting in a different way, so that the lifted problem has a more favorable structure.
[Waldspurger, d'Aspremont, and Mallat, 2015]
- Use the fact that the solution will be low-rank.
\rightarrow Represent X by its eigenvectors.
[Yurtsever, Udell, Tropp, and Cevher, 2017]
- Find a convexification method with no lifting?
\rightarrow PhaseMax
[Bahmani and Romberg, 2017]
[Goldstein and Studer, 2016]

Convexification in the natural parameter space

Find $x \in \mathbb{C}^{n}$
such that $\left|\left\langle x, f_{k}\right\rangle\right|=b_{k}, \quad \forall k \leq m$.

Recall that the problem is that the set

$$
\left\{x \in \mathbb{C}^{n},\left|\left\langle x, f_{k}\right\rangle\right|=b_{k}\right\}
$$

is non-convex.
We replace the equality by an inequality. The set

$$
\left\{x \in \mathbb{C}^{n},\left|\left\langle x, f_{k}\right\rangle\right| \leq b_{k}\right\}
$$

is convex.

Convexification in the natural parameter space

Find $x \in \mathbb{C}^{n}$
such that $\left|\left\langle x, f_{k}\right\rangle\right| \neq b_{k}, \quad \forall k \leq m$.

Recall that the problem is that the set

$$
\left\{x \in \mathbb{C}^{n},\left|\left\langle x, f_{k}\right\rangle\right|=b_{k}\right\}
$$

is non-convex.
We replace the equality by an inequality. The set

$$
\left\{x \in \mathbb{C}^{n},\left|\left\langle x, f_{k}\right\rangle\right| \leq b_{k}\right\}
$$

is convex.

PhaseMax
 Convexification in the natural parameter space

We get a convex approximated problem.

Find $x \in \mathbb{C}^{n}$
such that $\left|\left\langle x, f_{k}\right\rangle\right| \leq b_{k}, \quad \forall k \leq m$.

Convexification in the natural parameter space
We get a convex approximated problem.

> Find $x \in \mathbb{C}^{n}$
> such that $\left|\left\langle x, f_{k}\right\rangle\right| \leq b_{k}, \quad \forall k \leq m$

But this problem has many solutions that are not the correct one (0 , for instance).

Convexification in the natural parameter space

We get a convex approximated problem.

> Find $x \in \mathbb{C}^{n}$ such that $\left|\left\langle x, f_{k}\right\rangle\right| \leq b_{k}, \quad \forall k \leq m$

But this problem has many solutions that are not the correct one (0 , for instance).

Let us assume that we can compute an approximation of x :

$$
x_{a n c h o r} \approx x_{\text {true }}
$$

Let us pick the solution that "looks most" like $x_{\text {anchor }}$.

Convexification in the natural parameter space

We get a convex approximated problem.

> Find $x \in \mathbb{C}^{n} \quad \operatorname{Max}\left\langle x, x_{\text {anchor }}\right\rangle$ such that $\left|\left\langle x, f_{k}\right\rangle\right| \leq b_{k}, \quad \forall k \leq m$.

But this problem has many solutions that are not the correct one (0 , for instance).

Let us assume that we can compute an approximation of x :

$$
x_{\text {anchor }} \approx x_{\text {true }}
$$

Let us pick the solution that "looks most" like $x_{\text {anchor }}$.

PhaseMax works

Theorem

Let $\left.\theta_{0} \in\right] 0 ; \frac{\pi}{2}[$ be fixed. There exists $\alpha, \gamma>0$ such that, if

$$
m \geq \alpha n \quad \text { and } \quad \text { angle }\left(x_{\text {anchor }}, x_{\text {true }}\right)<\theta_{0}
$$

then PhaseMax recovers the correct solution, with probability $1-O\left(e^{-\gamma m}\right)$.
[Bahmani and Romberg, 2017]
[Goldstein and Studer, 2016]

Intuition

To simplify, assume x, f_{1}, \ldots, f_{m} have real coordinates.

$$
x_{\text {true }}^{\times}
$$

$$
\times 0
$$

$\operatorname{Max}\left\langle x, x_{\text {anchor }}\right\rangle$
s.t. $\left|\left\langle x, f_{k}\right\rangle\right| \leq b_{k}, \forall k$

Intuition

To simplify, assume x, f_{1}, \ldots, f_{m} have real coordinates.

$$
\left\{\left|\left\langle x, f_{1}\right\rangle\right| \leq b_{1}\right\}
$$

$\operatorname{Max}\left\langle x, x_{\text {anchor }}\right\rangle$
s.t. $\left|\left\langle x, f_{k}\right\rangle\right| \leq b_{k}, \forall k$

Intuition

To simplify, assume x, f_{1}, \ldots, f_{m} have real coordinates.

Intuition

To simplify, assume x, f_{1}, \ldots, f_{m} have real coordinates.

$\operatorname{Max}\left\langle x, x_{\text {anchor }}\right\rangle$
s.t. $\left|\left\langle x, f_{k}\right\rangle\right| \leq b_{k}, \forall k$

Intuition

To simplify, assume x, f_{1}, \ldots, f_{m} have real coordinates.

$\operatorname{Max}\left\langle x, x_{\text {anchor }}\right\rangle$
s.t. $\left|\left\langle x, f_{k}\right\rangle\right| \leq b_{k}, \forall k$

Intuition

To simplify, assume x, f_{1}, \ldots, f_{m} have real coordinates.

$\operatorname{Max}\left\langle x, x_{\text {anchor }}\right\rangle$
s.t. $\left|\left\langle x, f_{k}\right\rangle\right| \leq b_{k}, \forall k$

Vague idea of proof

We show : for all δ, if

$$
\begin{aligned}
\left\langle x_{\text {true }}+\delta\right. & \left., x_{\text {anchor }}\right\rangle \\
& \geq\left\langle x_{\text {true }}, x_{\text {anchor }}\right\rangle
\end{aligned}
$$

then $x_{\text {true }}+\delta$ is not in the intersection of the slabs.

Vague idea of proof

We show : for all δ, if

$$
\left\langle\delta, x_{\text {anchor }}\right\rangle \geq 0
$$

then $x_{\text {true }}+\delta$ is not in the intersection of the slabs.

Vague idea of proof

We show : for all δ, if

$$
\left\langle\delta, x_{\text {anchor }}\right\rangle \geq 0
$$

then, for some k,

$$
\begin{aligned}
\left|\left\langle x_{\text {true }}+\delta, f_{k}\right\rangle\right| & >b_{k} \\
& =\left|\left\langle x_{\text {true }}, f_{k}\right\rangle\right| .
\end{aligned}
$$

Vague idea of proof

We show : for all δ, if

$$
\left\langle\delta, x_{\text {anchor }}\right\rangle \geq 0
$$

then, for some k,

$$
\begin{aligned}
\left|\left\langle x_{\text {true }}+\delta, f_{k}\right\rangle\right| & >b_{k} \\
& =\left|\left\langle x_{\text {true }}, f_{k}\right\rangle\right| .
\end{aligned}
$$

Enough to show that, $\forall \delta$, if

$$
\left\langle\delta, x_{\text {anchor }}\right\rangle \geq 0
$$

then, for some k,

$$
\operatorname{sign}\left(\left\langle x_{\text {true }}, f_{k}\right\rangle\right)\left\langle\delta, f_{k}\right\rangle>0
$$

Vague idea of proof

In other words, it is enough to show that, with high probability,

$$
\begin{gathered}
\text { A specific half-space } \subset \text { Some union of random } \\
\text { half-spaces. }
\end{gathered}
$$

The probability that the inclusion holds can be precisely lower-bounded.

Stability to noise?

- PhaseMax is stable to bounded non-negative noise.
[Bahmani and Romberg, 2017]
[Goldstein and Studer, 2016]
- A modified version is stable to sparse arbitrary noise.
[Hand and Voroninski, 2016]
- More realistic noise models ?

Computational complexity

- In PhaseMax, the unknown is a vector, not a matrix as in PhaseLift.
- The most costly operations in solving PhaseMax are matrix-vector multiplications: $O\left(n^{2}\right)$ operations.
- Solving a penalized version of PhaseMax with a first order method :

$$
O\left(\frac{n^{2}}{\epsilon^{3 / 2}}\right)
$$

where $\epsilon>0$ is the desired precision, and $m=O(n)$.
(For PhaseLift, the term in n was n^{3} or $n^{4.5}$.)

Numerical results

Median error as a function of m / n for $n=64$.
[Chandra, Zhong, Hontz, McCulloch, Studer, and Goldstein, 2017]

Numerical results

Error as a function of the time, for $n=64$ and $m=256$.

Summary

- PhaseLift
- Lifting the problem \rightarrow convenient convex approximation.
- PhaseLift has very good theoretical guarantees.
- Because of lifting, solving PhaseLift is slow.
- PhaseMax
- Convexification without lifting.
- PhaseMax has good theoretical guarantees.
- Maybe a bit less precise than PhaseLift, but much faster.

Tomorrow

Convexification is not the only way to handle non-convexity.
We can also ignore the non-convexity, and try to solve the problem "as if it was convex".
\rightarrow Non-convex methods.

