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Setting

Phase retrieval in finite dimension :

Reconstruct x ∈ Cn from (|〈x , fk〉|)1≤k≤m ?

(The f1, . . . , fm are known elements of Cn.)

We assume the fk ’s to be random realizations of independent
normal distributions :

fk
i .i .d .∼ NC(0, Idn), k = 1, . . . ,m.

When m ≥ αn, for some fixed constant α,
the phase retrieval problem is well-posed with high probability.
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Which reconstruction algorithms can we use ?

We want algorithms that have the two following properties :

1. They are practical to use.
I Reasonably fast.
I Stable to noise.
I (Ideally,) not too complex to implement.

2. It is possible to rigorously prove that they succeed
(with high probability).
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Reconstruct x ∈ Cn from (|〈x , fk〉|)1≤k≤m ?

This is a non-convex problem.

To oversimplify, problems that involve only convex constraints
can be efficiently solved.

But for k ≤ m, bk ∈ R+, the constraint

|〈x , fk〉| = bk ,

defines a non-convex set in Cn.
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Traditional algorithms

Several phase retrieval algorithms were proposed from the 70s.

They typically relied on simple heuristics.

Numerically, they were shown to perform well in some cases.

But because of non-convexity, they could also get stuck in
“local minima” and fail to solve the problem.

No theoretical understanding of when they succeeded and
when they did not.
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Convexification methods

The picture changed with the introduction of convexification
methods.

Principle

I Approximate the problem by a convex one (“easy” to
solve).

I Prove that the original problem and the approximated one
actually have the same solution.

We will present two convexification methods :

I PhaseLift (∼ 2011)

I PhaseMax (∼ 2015)
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Lifting

Reconstruct x
from (|〈x , fk〉|)k≤m.

⇐⇒ Reconstruct xx∗

from (|〈x , fk〉|2)k≤m.

⇐⇒ Reconstruct xx∗ from
(Tr(f ∗k xx

∗fk))k≤m.

⇐⇒
Reconstruct X ∈ Cn×n from

(Tr(Xfk f
∗
k ))k≤m,

with X positive, hermitian, rank 1.

= (f ∗k x)(x∗fk)

= Tr(xx∗fk f
∗
k )

(x∗
def
= xT )

(n × n matrix)
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Lifting
Reconstruct X ∈ Cn×n from

(Tr(Xfk f
∗
k ))k≤m,

with X positive, hermitian, rank 1.

⇐⇒

Find X ∈ Hn

s.t. Tr(Xfk f
∗
k ) = bk , ∀k

X � 0

rank(X ) = 1.

Set of hermitian
matrices

Summary : a change of variable (x → xx∗ = X ) has turned
the modulus constraint into a linear constraint.

Not specific to phase retrieval (e.g. MaxCut).
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Lifting

Find X ∈ Hn

s.t. Tr(Xfk f
∗
k ) = bk , ∀k

X � 0

rank(X ) = 1.

convex

convex

non-convex

The problem is still non-convex :

{X ∈ Hn, rank(X ) = 1} is not convex.

But methods exist to deal with such constraints.
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Digression : sparse recovery

Imagine you want to find x ∈ Rn, solution of

Minimize Card{i , xi 6= 0} under condition L(x) = a,

with L linear and a known.

This problem is not convex.

Classical heuristic : replace “Card{i , xi 6= 0}” by the `1-norm.

Minimize ||x ||1 under condition L(x) = a,

The resulting problem is convex.
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Convexification

Same idea : replace the rank condition by a convex surrogate.

A good convex surrogate is the nuclear norm :

||X ||1 =
n∑

k=1

|λk(X )|,

where λ1(X ), . . . , λn(X ) are the eigenvalues of X .

Find X ∈ Hn

s.t. Tr(Xfk f
∗
k ) = bk , ∀k

X � 0

rank(X ) = 1.

Minimize ||X ||1
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Convexification

Minimize ||X ||1 = Tr(X )

s.t. Tr(Xfk f
∗
k ) = bk , ∀k

X � 0.

This problem is convex. We can solve it in polynomial time.

This problem is called PhaseLift.
[Chai, Moscoso, and Papanicolaou, 2011]
[Candès, Eldar, Strohmer, and Voroninski, 2011]

This problem is only an approximation of the original problem.
Will its solution be the same as the original solution ?
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Is the solution the same as the original one ?

Theorem (PhaseLift works)

There exist constants α, γ > 0 such that, when

m ≥ αn,

the solution of the approximated problem is the same as the
solution of the initial one,
with probability at least 1− O(e−γm).

[Candès, Strohmer, and Voroninski, 2013]
[Candès and Li, 2014]
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Idea of proof

(Original problem) (Convex approximation)

Find X

s.t. Tr(Xfk f
∗
k ) = bk ,∀k

X � 0

rank(X ) = 1.

Minimize Tr(X )

s.t. Tr(Xfk f
∗
k ) = bk ,∀k

X � 0.

Let Xtrue = xtruex
∗
true be the solution of the original problem.

Let us show that it is a solution of the approximated problem.

To simplify, we assume Xtrue = e1e
∗
1 =

(
1 0 ... 0
0 0
...

...
0 ... 0

)
.
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Xtrue = e1e
∗
1 solution of Minimize Tr(X ) = 〈X , Idn〉

s.t. Tr(Xfk f
∗
k ) = bk , ∀k

X � 0 ?

Xtrue

{X � 0}

{Tr(Xfk f
∗
k ) = bk ,∀k}

Xtrue solution
⇐⇒

−Idn ∈ Normal cone
to the

constraint set
at Xtrue .
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Dual certificate

We want to show :

−Idn ∈ Normal cone to the constraint set at Xtrue = e1e
∗
1 .

with Constraint set = {X � 0} ∩ {Tr(Xfk f
∗
k ) = bk , ∀k}.

The normal cone of the intersection contains the sum of the
normal cones of each set :{(

0 ... 0
...
0

M

)
,M � 0

}
+

{∑
k

ck fk f
∗
k , c1, . . . , cm ∈ R

}
.

Let us find M � 0 and c1, . . . , cm ∈ R such that

−Idn =

(
0 ... 0
...
0

M

)
+
∑

k≤m ck fk f
∗
k .
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We want to find M � 0 and c1, . . . , cm ∈ R such that

−Idn =

(
0 ... 0
...
0

M

)
+
∑
k≤m

ck fk f
∗
k .

≈
(Approximate equality

is actually enough)

(Idea)

 0 0 ... 0
0 − 1

2
0

...
...

...
0 0 ... − 1

2

− 1

2m

∑
k≤m

|〈e1, fk〉|2fk f ∗k .

=

( 2 0 ... 0
0 1 0
...

. . .
...

0 0 ... 1

)
in expectation

≈


−1 0 ... 0
0 − 1

2 0

...
. . .

...
0 0 ... − 1

2

 by concentration

inequalities

≈ −Idn
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End of the proof

We have constructed an (approximate) dual certificate.

This shows that the solution Xtrue = e1e
∗
1 of the original

problem is also a solution of the approximated problem.

With the dual certificate, we can also prove that the solution
of the approximated problem is unique.

So with high probability, PhaseLift works.
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PhaseLift is stable to noise

Minimize Tr(X )

s.t. Tr(Xfk f
∗
k ) = bk+εk , ∀k

X � 0 ?

For simplicity, assume ||x ||2 = 1.

Theorem (Candès and Li [2014])

Under the same hypotheses as previously, PhaseLift allows to
recover a vector xnoise such that, with high probability,

||xtrue − xnoise ||2 ≤ constant × ||ε||1
m

.



PhaseLift 20 / 34

Possible extensions

I The probability distribution of the fk ’s is something else
than a normal law.
→ “Coded diffraction patterns”

[Candès, Li, and Soltanolkotabi, 2015]
[Gross, Krahmer, and Kueng, 2015]

I The noise contains some very large entries.

[Hand, 2017]
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Computational complexity

It depends on which algorithm we use to solve PhaseLift.

We assume m = O(n) ; let ε be the precision.

I Interior-point solvers :

O

(
n4.5 log

(
1

ε

))
.

I First-order methods :

O

(
n3

ε

)
.

The problem is that we have lifted.
The matrix X has n2 entries, while x had only n.
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How to make it faster ?

I Perform lifting in a different way, so that the lifted
problem has a more favorable structure.
[Waldspurger, d’Aspremont, and Mallat, 2015]

I Use the fact that the solution will be low-rank.
→ Represent X by its eigenvectors.

[Yurtsever, Udell, Tropp, and Cevher, 2017]

I Find a convexification method with no lifting ?
→ PhaseMax

[Bahmani and Romberg, 2017]
[Goldstein and Studer, 2016]
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Convexification in the natural parameter space

Find x ∈ Cn

such that |〈x , fk〉| = bk , ∀k ≤ m.

Recall that the problem is that the set

{x ∈ Cn, |〈x , fk〉| = bk}

is non-convex.

We replace the equality by an inequality. The set

{x ∈ Cn, |〈x , fk〉| ≤ bk}

is convex.

≤
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Convexification in the natural parameter space

We get a convex approximated problem.

Find x ∈ Cn

such that |〈x , fk〉| ≤ bk , ∀k ≤ m.

But this problem has many solutions that are not the correct
one (0, for instance).

Let us assume that we can compute an approximation of x :

xanchor ≈ xtrue .

Let us pick the solution that “looks most” like xanchor .

Max 〈x , xanchor〉
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PhaseMax works

Theorem

Let θ0 ∈]0; π
2

[ be fixed.
There exists α, γ > 0 such that, if

m ≥ αn and angle(xanchor , xtrue) < θ0,

then PhaseMax recovers the correct solution,
with probability 1− O(e−γm).

[Bahmani and Romberg, 2017]
[Goldstein and Studer, 2016]
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Intuition

To simplify, assume x , f1, . . . , fm have real coordinates.

0

xtrue

{|〈x , f1〉| ≤ b1}

{|〈x , f2〉| ≤ b2}

{|〈x , f3〉| ≤ b3}

xanchor

Max 〈x , xanchor〉
s.t. |〈x , fk〉| ≤ bk , ∀k
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Vague idea of proof

0

xtrue

{|〈x , f1〉| ≤ b1}

{|〈x , f2〉| ≤ b2}
{|〈x , f3〉| ≤ b3}

xanchor

We show : for all δ, if

〈xtrue + δ, xanchor〉
≥ 〈xtrue , xanchor〉,

then xtrue + δ is not in
the intersection of the slabs.

Enough to show that, ∀δ, if

〈δ, xanchor〉 ≥ 0,

then, for some k ,

sign(〈xtrue , fk〉)〈δ, fk〉 > 0.
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Vague idea of proof

In other words, it is enough to show that, with high probability,

A specific half-space ⊂ Some union of random

half-spaces.

The probability that the inclusion holds can be precisely
lower-bounded.
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Stability to noise ?

I PhaseMax is stable to bounded non-negative noise.
[Bahmani and Romberg, 2017]
[Goldstein and Studer, 2016]

I A modified version is stable to sparse arbitrary noise.
[Hand and Voroninski, 2016]

I More realistic noise models ?
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Computational complexity

I In PhaseMax, the unknown is a vector, not a matrix as in
PhaseLift.

I The most costly operations in solving PhaseMax are
matrix-vector multiplications : O(n2) operations.

I Solving a penalized version of PhaseMax with a first
order method :

O

(
n2

ε3/2

)
,

where ε > 0 is the desired precision, and m = O(n).

(For PhaseLift, the term in n was n3 or n4.5.)
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Numerical results
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Median error as a function of m/n for n = 64.

[Chandra, Zhong, Hontz, McCulloch, Studer, and Goldstein,
2017]
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Numerical results
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Summary

I PhaseLift
I Lifting the problem → convenient convex approximation.
I PhaseLift has very good theoretical guarantees.
I Because of lifting, solving PhaseLift is slow.

I PhaseMax
I Convexification without lifting.
I PhaseMax has good theoretical guarantees.
I Maybe a bit less precise than PhaseLift, but much faster.
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Tomorrow

Convexification is not the only way to handle non-convexity.

We can also ignore the non-convexity, and try to solve the
problem “as if it was convex”.

→ Non-convex methods.
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