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Introduction 2 / 37

Reminder

Reconstruct x ∈ Cn from (|〈x , fk〉|)1≤k≤m ?

(The f1, . . . , fm are known elements of Cn.)

They have been chosen at random, with a normal distribution :

fk
i .i .d .∼ NC(0, Idn), k = 1, . . . ,m.

Provided that, for some α > 0,

m ≥ αn,

the phase retrieval problem is well-posed with high probability.

It is however difficult to solve, because it is non-convex.
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Yesterday afternoon : convexification methods

Principle

I Approximate the non-convex problem by a convex one.

I Show that the non-convex problem and its convex
approximation have the same solution.

Results

I Algorithms with strong theoretical guarantees.

I Solving PhaseLift is slow, but solving PhaseMax is faster.
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Today : non-convex methods

Very broadly speaking,

I Ignore the non-convexity of the problem ; solve as if it was
convex.

I Hope that it works.

Practitioners traditionally used this kind of methods.
But there was not much theoretical understanding.

In the last three years, these methods have been improved,
and a theoretical analysis has been done.
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Outline

1. Presentation of the main non-convex methods

2. Analysis of “improved” non-convex methods

3. Analysis of “non-improved” non-convex methods ?
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Main non-convex methods

I Alternating projections / Gerchberg-Saxton
[Gerchberg and Saxton, 1972]

I Hybrid Input Output / Fienup
[Fienup, 1982]

I Gradient descents
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Alternating projections

Find x ∈ Cn

s.t. |〈x , fk〉| = bk , ∀k ≤ m

Instead of directly reconstructing x , we focus on reconstructing

y = (〈x , fk〉)1≤k≤m.
(Equivalent because (fk)k≤m is a generating family.)

All we know about y is that it has the following properties.

(Property 1) |yk | = bk , ∀k ≤ m.
(Property 2) y ∈ Range (z → (〈z , fk〉)1≤k≤m).
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Alternating projections

Find y that satisfies (Property 1) and (Property 2) ?

Let E1 be the set of points that satisfy (Property 1).
Let E2 be the set of points that satisfy (Property 2).

Find y ∈ E1 ∩ E2 ?

(Property 1)
(E1)

(Property 2)
(E2)

y

y0 If the sets are convex, a
possible algorithm is to

I start from any point y0 ;

I alternately project it
onto E1 and E2.
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Alternating projections
The sets are not convex, but we use the same algorithm.

(E1)

(E2)y

y0

Algorithm
1. Choose any y0.
2. Project it on E1.
3. Project it on E2.
4. Repeat Steps 2-3 several times.
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Alternating projections

I Simple algorithm, easy to implement.

I Easily incorporates available additional information if any.

I Fast.
→ O(n + n2 log(1/ε)) operations per iteration.

I But non-convexity can a priori make it fail.

(E1)

(E2)y

y0
(E1)

(E2)y

y0

(Success) (“Bad critical point”)
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Gradient descent

Find x ∈ Cn

s.t. |〈x , fk〉| = bk , ∀k ≤ m

Choose a reasonable objective function, like :

Obj : Cn → R
z → 1

m

∑m
k=1 (|〈z , fk〉|2 − b2

k)
2
.

The solution is the only global minimum of Obj .

Algorithm

I Run gradient descent on Obj .

I Hope that it finds the global minimum.
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Gradient descent

I Simple algorithm, easy to implement.

I Fast
→ O(n2) operations per iteration.

I But non-convexity can a priori make it fail.

x

y
Obj

x

y
Obj

(Success) (“Bad critical point”)
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How to avoid bad critical points ?

(E1)

(E2)y

y0

(E1)

(E2)y

y0

(Bad critical point)
Texte.
Texte.

This would not have happened
if y0 had been close enough
to y .

[Netrapalli, Jain, and Sanghavi, 2013]
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Compute x0 close enough to xtrue ?

It is possible, using the randomness of f1, . . . , fm.

Idea : by concentration inequalities,

1

m

m∑
k=1

|〈xtrue , fk〉|2fk f ∗k ≈ E
(
|〈xtrue , f 〉|2ff ∗

)

= Idn+xtruex∗true ,

where f ∼ NC(0, Idn).

Set

x0 = main eigenvector
(

1
m

∑m
k=1 |〈xtrue , fk〉|2fk f ∗k

)
.
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Compute x0 close enough to xtrue ?

x0 = main eigenvector
(

1
m

∑m
k=1 |〈xtrue , fk〉|2fk f ∗k

)
.

This exact definition is not optimal.

One issue : the indexes k for which |〈xtrue , fk〉| is large can
induce large unwanted deviations of the eigenvector.

One solution : generalize to

x0 = main eigenvector
(

1
m

∑m
k=1 σ(|〈xtrue , fk〉|)fk f ∗k

)
,

with σ better than the square (e.g. σ = (s → s21|s|≤3)).
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Theorem (Spectral initialization works)

Let δ > 0 be fixed.
There exist α, γ > 0 such that, when

m ≥ αn,

then, if we define x0 as in the previous slide,

||x0 − xtrue ||2 ≤ δ||xtrue ||2,

with probability at least 1− O(e−γm).

[Chen and Candès, 2015]
[Chen, Fannjiang, and Liu, 2015]
[Mondelli and Montanari, 2017]
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Consider one of the following algorithms :

I Gradient descent with a (specific) smooth objective ;

I Gradient descent with a (specific) non-smooth objective ;

I Alternating projections.

Theorem (With a good initialization, it works)

There exists α, γ > 0 and η ∈]0; 1[ such that, if

m ≥ αn,

when the algorithm is initialized with the previous x0, then its
estimate xt after t steps satisfies

||xt − xtrue ||2 ≤ ηt ||xtrue ||2,

with probability at least 1− O(e−γm).
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[Candès, Li, and Soltanolkotabi, 2015]
[Chen and Candès, 2015] [Zhang and Liang, 2016]
[Wang, Giannakis, and Eldar, 2017] [Waldspurger, 2017]

Idea of proof for smooth gradient descent

Find x ∈ Cn

s.t. |〈x , fk〉| = bk , ∀k ≤ m

The smooth objective function is

Obj : Cn → R
z → 1

m

∑m
k=1 (|〈z , fk〉|2 − b2

k)
2
.

Wirtinger Flow algorithm : ∀t ∈ N, xt+1 = xt − µ∇Obj(xt).
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Idea of proof

Intuition

The objective function
is (more or less)
locally convex around
xtrue .
[White, Sanghavi, and
Ward, 2017]

Being close to xtrue ,
the initial point
x0 belongs to the
convexity region.

xtrue

Objective function

Initial point x0

Convexity region
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Idea of proof

To simplify, we assume ||xtrue || = 1.

We have seen that, with high probability,

||x0 − xtrue ||2 ≤
1

8
.

We will show that, for all z ∈ B(xtrue , 1/8),

∣∣∣∣(z − µ∇Obj(z)
)
− xtrue

∣∣∣∣
2
≤ η||z − xtrue ||2,

for some fixed constant η < 1.
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Idea of proof

Show that, for all z ∈ B(x , 1/8),

∣∣∣∣(z − µ∇Obj(z)
)
− xtrue

∣∣∣∣
2
≤ η||z − xtrue ||2,

for some fixed constant η < 1 ?

xtrue
z

−µ∇Obj(z)

If, in addition, we can control
||µ∇Obj(z)||2, it is enough to show

Re 〈xtrue − z ,−µ∇Obj(z)〉
≥ ε||z − xtrue ||22.
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Idea of proof

Show that, for all z ∈ B(x , 1/8),

Re 〈z − xtrue ,∇Obj(z)〉 ≥ ε||z − xtrue ||22,

that is, for all h ∈ B(0, 1/8),

Re 〈h,∇Obj(xtrue + h)〉 ≥ ε||h||22.

We can compute
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∇Obj : Cn → Cn

z → 4
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Idea of proof

For a fixed h, with high probability,

Re 〈h,∇Obj(xtrue + h)〉 =
4

m

m∑
k=1

(
2Re (〈xtrue , fk〉〈h, fk〉)2

+3Re (〈xtrue , fk〉〈h, fk〉)|〈h, fk〉|2 + |〈h, fk〉|4
)

≈ its expectation

= 4
(
3|〈xtrue , h〉|2 + ||h||2

+3〈xtrue , h〉||h||2 + 2||h||4
)

≥ 5

2
||h||2

It holds for all h ∈ B(0, 1/8) by a union bound argument.

(Concentration
inequalities)
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Related literature

The same method

Good initialization + gradient descent

has been used to develop algorithms for related non-convex
problems (“low-rank matrix recovery problems”).

Examples

I Matrix sensing
[Zhao, Wang, and Liu, 2015]

I Matrix completion
[Jain, Netrapalli, and Sanghavi, 2013]

I Sparse PCA
[Chen and Wainwright, 2015]

I ...
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How important is the initialization ?

The previous proof strongly relied on the use of a carefully
chosen initial point.

Is it an artifact of the proof technique, or is it really necessary
to carefully choose the initial point ?

For some related problems, it has been shown that non-convex
algorithms can succeed regardless of their initial point in
certain regimes :

I Matrix sensing
[Bhojanapalli, Neyshabur, and Srebro, 2016]

I Matrix completion
[Ge, Lee, and Ma, 2016]

I Phase synchronization
[Boumal, 2016]
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Non-convex algorithms with arbitrary initialization

Theorem (Sun, Qu, and Wright [2017])

There exist α, γ > 0 such that, when

m ≥ αn log3(n),

then, with probability at least 1− γ
m

,
non-convex gradient descent with the same smooth objective
as previously returns a sequence (xt)t∈N such that

xt
t→+∞→ xtrue ,

except possibly for x0 in a set with zero Lebesgue measure.
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Why is it possible ?

x

y
Obj

x

y
Obj

For this non-convex
function, the set of
“bad initial points”
has non-zero Lebesgue
measure.

This non-convex function
has no bad initial point.
.
.
.
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Idea of proof

Principle : show that there is no point in which gradient
descent can get stuck, unless it starts from a zero measure set.

Show that for any z that is not the solution :
I Either ∇Obj(z) 6= 0 : z is not a critical point.
I Or z is a critical point, but an unstable critical point.
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Idea of proof

When is a critical point z unstable ?
→ At least when the Hessian ∇2(z) has a (strictly) negative

eigenvalue.
[Lee, Simchowitz, Jordan, and Recht, 2016]

Show that for all z that is not the solution,

∇Obj(z) 6= 0 or λmin(∇2 Obj(z)) < 0?
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Idea of proof

∇Obj(z) 6= 0 or λmin(∇2 Obj(z)) < 0?

Split Cn in zones :

I Zone 1 : when ||z || is small or 〈xtrue , z〉 ≈ 0,

∇2 Obj(z).(xtrue , xtrue) < 0.

I Zone 2 : when ||z || is large,

〈∇Obj(z), z〉 6= 0.

I Zone 3 : when ||z || is medium, and 〈xtrue , z〉 6≈ 0,

〈∇Obj(z), z − xtrue〉 6= 0.
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Idea of proof

Zone 1 : show that when ||z || is small or 〈xtrue , z〉 ≈ 0,

∇2 Obj(z).(xtrue , xtrue) < 0?

Same principle as before

I Write the expression of ∇2 Obj(z).(xtrue , xtrue).

I Compute its expectation, and show that it is negative.

I With concentration inequalities, show that
∇2 Obj(z).(xtrue , xtrue) is close to its expectation.
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Does it work for other algorithms ?
For alternating projections, one can show that bad critical
points (more or less) disappear, with high probability, when

m ≥ αn2.

This is much worse than for smooth gradient descent.

1 2 3 4 5 6 7 8 910
1

5

10

20

40
60
80

n

m

m = n2

m = n

(Dim m at which no bad critical points exists with proba 1/2.)
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Alternating projections with random initialization
Nevertheless, starting from a random initial point, alternating
projections seem to succeed even when m = O(n).
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Apparently, there are bad critical points, but their attraction
basin is small.

⇒ If the initialization is chosen at random, the probability to
land in one of these attraction basins is small.

Tentative illustration in 3D
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Numerical results
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Summary

Today, we have discussed non-convex methods.

I Almost the same theoretical guarantees as convexification
techniques.

I Simpler and faster to implement.

I Theoretical analysis is more involved.
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Open questions

I Better understanding of the importance (or not) of the
initialization method ?
Why don’t all algorithms behave the same with this
respect ?

I Incorporate the structure of x in the reconstruction
algorithms ?
[Soltanolkotabi, 2017]

I Extend these algorithms to non-random measurement
vectors f1, . . . , fm ?
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