Algorithms for phase retrieval problems Part III

Irène Waldspurger
CNRS et CEREMADE (Université Paris Dauphine) Équipe MOKAPLAN (INRIA)

12 décembre 2017
Journées de géométrie algorithmique
Aussois

Reminder

$$
\text { Reconstruct } x \in \mathbb{C}^{n} \text { from }\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m} \text { ? }
$$

(The f_{1}, \ldots, f_{m} are known elements of \mathbb{C}^{n}.)

Reminder

$$
\text { Reconstruct } x \in \mathbb{C}^{n} \text { from }\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m} ?
$$

(The f_{1}, \ldots, f_{m} are known elements of \mathbb{C}^{n}.)
They have been chosen at random, with a normal distribution :

$$
f_{k} \stackrel{i . i . d .}{\sim} \mathcal{N}_{\mathbb{C}}\left(0, \operatorname{Id}_{n}\right), \quad k=1, \ldots, m .
$$

Reminder

$$
\text { Reconstruct } x \in \mathbb{C}^{n} \text { from }\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m} \text { ? }
$$

(The f_{1}, \ldots, f_{m} are known elements of \mathbb{C}^{n}.)
They have been chosen at random, with a normal distribution :

$$
f_{k} \stackrel{i . i . d .}{\sim} \mathcal{N}_{\mathbb{C}}\left(0, \operatorname{Id}_{n}\right), \quad k=1, \ldots, m .
$$

Provided that, for some $\alpha>0$,

$$
m \geq \alpha n
$$

the phase retrieval problem is well-posed with high probability.

Reminder

$$
\text { Reconstruct } x \in \mathbb{C}^{n} \text { from }\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m} ?
$$

(The f_{1}, \ldots, f_{m} are known elements of \mathbb{C}^{n}.)
They have been chosen at random, with a normal distribution :

$$
f_{k} \stackrel{i . i . d .}{\sim} \mathcal{N}_{\mathbb{C}}\left(0, \operatorname{Id}_{n}\right), \quad k=1, \ldots, m .
$$

Provided that, for some $\alpha>0$,

$$
m \geq \alpha n
$$

the phase retrieval problem is well-posed with high probability.
It is however difficult to solve, because it is non-convex.

Yesterday afternoon: convexification methods

Principle

- Approximate the non-convex problem by a convex one.
- Show that the non-convex problem and its convex approximation have the same solution.

Results

- Algorithms with strong theoretical guarantees.
- Solving PhaseLift is slow, but solving PhaseMax is faster.

Today: non-convex methods
Very broadly speaking,

- Ignore the non-convexity of the problem ; solve as if it was convex.
- Hope that it works.

Practitioners traditionally used this kind of methods. But there was not much theoretical understanding.

In the last three years, these methods have been improved, and a theoretical analysis has been done.

Outline

1. Presentation of the main non-convex methods
2. Analysis of "improved" non-convex methods
3. Analysis of "non-improved" non-convex methods?

Main non-convex methods

- Alternating projections / Gerchberg-Saxton [Gerchberg and Saxton, 1972]
- Hybrid Input Output / Fienup
[Fienup, 1982]
- Gradient descents

Main non-convex methods

- Alternating projections / Gerchberg-Saxton [Gerchberg and Saxton, 1972]
- Hybrid Input Output / Fienup
[Fienup, 1982]
- Gradient descents

Alternating projections
Find $x \in \mathbb{C}^{n}$

$$
\text { s.t. }\left|\left\langle x, f_{k}\right\rangle\right|=b_{k}, \quad \forall k \leq m
$$

Instead of directly reconstructing x, we focus on reconstructing

$$
y=\left(\left\langle x, f_{k}\right\rangle\right)_{1 \leq k \leq m} .
$$

(Equivalent because $\left(f_{k}\right)_{k \leq m}$ is a generating family.)
All we know about y is that it has the following properties.
(Property 1) $\quad\left|y_{k}\right|=b_{k}, \forall k \leq m$.
(Property 2) $\quad y \in \operatorname{Range}\left(z \rightarrow\left(\left\langle z, f_{k}\right\rangle\right)_{1 \leq k \leq m}\right)$.

Main non-convex methods
 Alternating projections

Find y that satisfies (Property 1) and (Property 2) ?
Let E_{1} be the set of points that satisfy (Property 1).
Let E_{2} be the set of points that satisfy (Property 2).
Find $y \in E_{1} \cap E_{2}$?

Main non-convex methods
 Alternating projections

Find y that satisfies (Property 1) and (Property 2) ?
Let E_{1} be the set of points that satisfy (Property 1). Let E_{2} be the set of points that satisfy (Property 2).

Find $y \in E_{1} \cap E_{2}$?

Main non-convex methods
 Alternating projections

The sets are not convex, but we use the same algorithm.

Main non-convex methods
 Alternating projections

The sets are not convex, but we use the same algorithm.

Algorithm

1. Choose any y_{0}.
2. Project it on E_{1}.
3. Project it on E_{2}.
4. Repeat Steps 2-3 several times.

Main non-convex methods
 Alternating projections

The sets are not convex, but we use the same algorithm.

Algorithm

1. Choose any y_{0}.
2. Project it on E_{1}.
3. Project it on E_{2}.
4. Repeat Steps 2-3 several times.

Main non-convex methods
 Alternating projections

The sets are not convex, but we use the same algorithm.

Algorithm

1. Choose any y_{0}.
2. Project it on E_{1}.
3. Project it on E_{2}.
4. Repeat Steps 2-3 several times.

Main non-convex methods
 Alternating projections

The sets are not convex, but we use the same algorithm.

Algorithm

1. Choose any y_{0}.
2. Project it on E_{1}.
3. Project it on E_{2}.
4. Repeat Steps 2-3 several times.

Main non-convex methods
 Alternating projections

The sets are not convex, but we use the same algorithm.

Algorithm

1. Choose any y_{0}.
2. Project it on E_{1}.
3. Project it on E_{2}.
4. Repeat Steps 2-3 several times.

Main non-convex methods
 Alternating projections

The sets are not convex, but we use the same algorithm.

Algorithm

1. Choose any y_{0}.
2. Project it on E_{1}.
3. Project it on E_{2}.
4. Repeat Steps 2-3 several times.

Main non-convex methods
 Alternating projections

The sets are not convex, but we use the same algorithm.

Algorithm

1. Choose any y_{0}.
2. Project it on E_{1}.
3. Project it on E_{2}.
4. Repeat Steps 2-3 several times.

Main non-convex methods
 Alternating projections

- Simple algorithm, easy to implement.
- Easily incorporates available additional information if any.
- Fast.
$\rightarrow O\left(n+n^{2} \log (1 / \epsilon)\right)$ operations per iteration.

Main non-convex methods
 Alternating projections

- Simple algorithm, easy to implement.
- Easily incorporates available additional information if any.
- Fast.
$\rightarrow O\left(n+n^{2} \log (1 / \epsilon)\right)$ operations per iteration.
- But non-convexity can a priori make it fail.

(Success)

("Bad critical point")

Gradient descent
Find $x \in \mathbb{C}^{n}$

$$
\text { s.t. }\left|\left\langle x, f_{k}\right\rangle\right|=b_{k}, \quad \forall k \leq m
$$

Choose a reasonable objective function, like :

$$
\begin{aligned}
\text { Obj: } \mathbb{C}^{n} & \rightarrow \mathbb{R} \\
z & \rightarrow \frac{1}{m} \sum_{k=1}^{m}\left(\left|\left\langle z, f_{k}\right\rangle\right|^{2}-b_{k}^{2}\right)^{2} .
\end{aligned}
$$

The solution is the only global minimum of $O b j$.

Gradient descent
Find $x \in \mathbb{C}^{n}$

$$
\text { s.t. }\left|\left\langle x, f_{k}\right\rangle\right|=b_{k}, \quad \forall k \leq m
$$

Choose a reasonable objective function, like :

$$
\begin{array}{rlc}
\text { Obj: } \mathbb{C}^{n} & \rightarrow & \mathbb{R} \\
z & \rightarrow & \frac{1}{m} \sum_{k=1}^{m}\left(\left|\left\langle z, f_{k}\right\rangle\right|^{2}-b_{k}^{2}\right)^{2} .
\end{array}
$$

The solution is the only global minimum of $O b j$.
Algorithm

- Run gradient descent on Obj.
- Hope that it finds the global minimum.

Gradient descent

- Simple algorithm, easy to implement.
- Fast
$\rightarrow O\left(n^{2}\right)$ operations per iteration.
- But non-convexity can a priori make it fail.

(Success)

("Bad critical point")

How to avoid bad critical points?

(Bad critical point)
[Netrapalli, Jain, and Sanghavi, 2013]

How to avoid bad critical points?

(Bad critical point)

This would not have happened if y_{0} had been close enough to y.
[Netrapalli, Jain, and Sanghavi, 2013]

Compute x_{0} close enough to $x_{\text {true }}$?
It is possible, using the randomness of f_{1}, \ldots, f_{m}.
Idea : by concentration inequalities,
$\frac{1}{m} \sum_{k=1}^{m}\left|\left\langle x_{\text {true }}, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{*} \approx \mathbb{E}\left(\left|\left\langle x_{\text {true }}, f\right\rangle\right|^{2} f f^{*}\right)$
where $f \sim \mathcal{N}_{\mathbb{C}}\left(0, \operatorname{Id}_{n}\right)$.

Compute x_{0} close enough to $x_{\text {true }}$?
It is possible, using the randomness of f_{1}, \ldots, f_{m}.
Idea : by concentration inequalities,
$\frac{1}{m} \sum_{k=1}^{m}\left|\left\langle x_{\text {true }}, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{*} \approx \mathbb{E}\left(\left|\left\langle x_{\text {true }}, f\right\rangle\right|^{2} f f^{*}\right)=\operatorname{Id}_{n}+x_{\text {true }} x_{\text {true }}^{*}$,
where $f \sim \mathcal{N}_{\mathbb{C}}\left(0, \mathrm{Id}_{n}\right)$.

Compute x_{0} close enough to $x_{\text {true }}$?
It is possible, using the randomness of f_{1}, \ldots, f_{m}.
Idea : by concentration inequalities,
$\frac{1}{m} \sum_{k=1}^{m}\left|\left\langle x_{\text {true }}, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{*} \approx \mathbb{E}\left(\left|\left\langle x_{\text {true }}, f\right\rangle\right|^{2} f f^{*}\right)=\operatorname{Id}_{n}+x_{\text {true }} X_{\text {true }}^{*}$,
where $f \sim \mathcal{N}_{\mathbb{C}}\left(0, \operatorname{Id}_{n}\right)$.
Set

$$
x_{0}=\text { main eigenvector }\left(\frac{1}{m} \sum_{k=1}^{m}\left|\left\langle x_{\text {true }}, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{*}\right)
$$

Compute x_{0} close enough to $x_{\text {true }}$?

$$
x_{0}=\text { main eigenvector }\left(\frac{1}{m} \sum_{k=1}^{m}\left|\left\langle x_{\text {true }}, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{*}\right)
$$

This exact definition is not optimal.
One issue: the indexes k for which $\left|\left\langle x_{\text {true }}, f_{k}\right\rangle\right|$ is large can induce large unwanted deviations of the eigenvector.

One solution: generalize to

$$
x_{0}=\text { main eigenvector }\left(\frac{1}{m} \sum_{k=1}^{m} \sigma\left(\left|\left\langle x_{\text {true }}, f_{k}\right\rangle\right|\right) f_{k} f_{k}^{*}\right)
$$

with σ better than the square (e.g. $\sigma=\left(s \rightarrow s^{2} 1_{|s| \leq 3}\right)$).

Theorem (Spectral initialization works)

Let $\delta>0$ be fixed.
There exist $\alpha, \gamma>0$ such that, when

$$
m \geq \alpha n,
$$

then, if we define x_{0} as in the previous slide,

$$
\left\|x_{0}-x_{\text {true }}\right\|_{2} \leq \delta\left\|x_{\text {true }}\right\|_{2},
$$

with probability at least $1-O\left(e^{-\gamma m}\right)$.
[Chen and Candès, 2015]
[Chen, Fannjiang, and Liu, 2015]
[Mondelli and Montanari, 2017]

Consider one of the following algorithms :

- Gradient descent with a (specific) smooth objective;
- Gradient descent with a (specific) non-smooth objective;
- Alternating projections.

Theorem (With a good initialization, it works)
There exists $\alpha, \gamma>0$ and $\eta \in] 0 ; 1[$ such that, if

$$
m \geq \alpha n,
$$

when the algorithm is initialized with the previous x_{0}, then its estimate x_{t} after t steps satisfies

$$
\left\|x_{t}-x_{\text {true }}\right\|_{2} \leq \eta^{t}\left\|x_{\text {true }}\right\|_{2},
$$

with probability at least $1-O\left(e^{-\gamma m}\right)$.
[Candès, Li, and Soltanolkotabi, 2015]
[Chen and Candès, 2015] [Zhang and Liang, 2016]
[Wang, Giannakis, and Eldar, 2017] [Waldspurger, 2017]
Idea of proof for smooth gradient descent

$$
\begin{aligned}
& \text { Find } x \in \mathbb{C}^{n} \\
& \text { s.t. }\left|\left\langle x, f_{k}\right\rangle\right|=b_{k}, \quad \forall k \leq m
\end{aligned}
$$

The smooth objective function is

$$
\begin{aligned}
& \text { Obj: } \mathbb{C}^{n} \rightarrow \quad \mathbb{R} \\
& z \rightarrow \frac{1}{m} \sum_{k=1}^{m}\left(\left|\left\langle z, f_{k}\right\rangle\right|^{2}-b_{k}^{2}\right)^{2} .
\end{aligned}
$$

Wirtinger Flow algorithm : $\forall t \in \mathbb{N}, x_{t+1}=x_{t}-\mu \nabla \operatorname{Obj}\left(x_{t}\right)$.

Idea of proof

Intuition

The objective function is (more or less) locally convex around $x_{\text {true }}$.
[White, Sanghavi, and Ward, 2017]

Being close to $x_{\text {true }}$, the initial point
x_{0} belongs to the convexity region.

Idea of proof

Intuition

The objective function is (more or less) locally convex around $x_{\text {true }}$.
[White, Sanghavi, and Ward, 2017]

Being close to $x_{\text {true }}$, the initial point
x_{0} belongs to the convexity region.

Idea of proof

Intuition

The objective function is (more or less) locally convex around $x_{\text {true }}$.
[White, Sanghavi, and Ward, 2017]

Being close to $x_{\text {true }}$, the initial point
x_{0} belongs to the convexity region.

Idea of proof
To simplify, we assume $\left\|x_{\text {true }}\right\|=1$.
We have seen that, with high probability,

$$
\left\|x_{0}-x_{\text {true }}\right\|_{2} \leq \frac{1}{8}
$$

Idea of proof

To simplify, we assume $\left\|x_{\text {true }}\right\|=1$.
We have seen that, with high probability,

$$
\left\|x_{0}-x_{\text {true }}\right\|_{2} \leq \frac{1}{8}
$$

We will show that, for all $z \in B\left(x_{\text {true }}, 1 / 8\right)$,

$$
\left\|(z-\mu \nabla \operatorname{Obj}(z))-x_{\text {true }}\right\|_{2} \leq \eta\left\|z-x_{\text {true }}\right\|_{2}
$$

for some fixed constant $\eta<1$.

Non-convex methods with good initialization
Idea of proof
Show that, for all $z \in B(x, 1 / 8)$,

$$
\left\|(z-\mu \nabla \operatorname{Obj}(z))-x_{\text {true }}\right\|_{2} \leq \eta\left\|z-x_{\text {true }}\right\|_{2}
$$

for some fixed constant $\eta<1$?
If, in addition, we can control
$\|\mu \nabla \operatorname{Obj}(z)\|_{2}$, it is enough to show

$$
\begin{aligned}
\operatorname{Re}\left\langle x_{\text {true }}-z,\right. & -\mu \nabla \operatorname{Obj}(z)\rangle \\
& \geq \epsilon\left\|z-x_{\text {true }}\right\|_{2}^{2}
\end{aligned}
$$

Non-convex methods with good initialization
Idea of proof
Show that, for all $z \in B(x, 1 / 8)$,

$$
\operatorname{Re}\left\langle z-x_{\text {true }}, \nabla \operatorname{Obj}(z)\right\rangle \geq \epsilon\left\|z-x_{\text {true }}\right\|_{2}^{2},
$$

that is, for all $h \in B(0,1 / 8)$,

$$
\operatorname{Re}\left\langle h, \nabla \operatorname{Obj}\left(x_{\text {true }}+h\right)\right\rangle \geq \epsilon\|h\|_{2}^{2} .
$$

Idea of proof
Show that, for all $z \in B(x, 1 / 8)$,

$$
\operatorname{Re}\left\langle z-x_{\text {true }}, \nabla \operatorname{Obj}(z)\right\rangle \geq \epsilon\left\|z-x_{\text {true }}\right\|_{2}^{2},
$$

that is, for all $h \in B(0,1 / 8)$,

$$
\operatorname{Re}\left\langle h, \nabla \operatorname{Obj}\left(x_{\text {true }}+h\right)\right\rangle \geq \epsilon\|h\|_{2}^{2} .
$$

We can compute
∇ Obj: $\mathbb{C}^{n} \rightarrow \quad \mathbb{C}^{n}$

$$
z \rightarrow \frac{4}{m} \sum_{k=1}^{m}\left(\left|\left\langle z, f_{k}\right\rangle\right|^{2}-\left|\left\langle x_{\text {true }}, f_{k}\right\rangle\right|^{2}\right) \overline{\left\langle z, f_{k}\right\rangle} f_{k} .
$$

Idea of proof
Show that, for all $z \in B(x, 1 / 8)$,

$$
\operatorname{Re}\left\langle z-x_{\text {true }}, \nabla \operatorname{Obj}(z)\right\rangle \geq \epsilon\left\|z-x_{\text {true }}\right\|_{2}^{2},
$$

that is, for all $h \in B(0,1 / 8)$,

$$
\operatorname{Re}\left\langle h, \nabla \operatorname{Obj}\left(x_{\text {true }}+h\right)\right\rangle \geq \epsilon\|h\|_{2}^{2} .
$$

We can compute
$\operatorname{Re}\left\langle h, \nabla \operatorname{Obj}\left(x_{\text {true }}+h\right)\right\rangle=\frac{4}{m} \sum_{k=1}^{m}\left(2 \operatorname{Re}\left(\overline{\left\langle x_{\text {true }}, f_{k}\right\rangle}\left\langle h, f_{k}\right\rangle\right)^{2}\right.$
$\left.+3 \operatorname{Re}\left(\overline{\left\langle x_{\text {true }}, f_{k}\right\rangle}\left\langle h, f_{k}\right\rangle\right)\left|\left\langle h, f_{k}\right\rangle\right|^{2}+\left|\left\langle h, f_{k}\right\rangle\right|^{4}\right)$

Idea of proof

For a fixed h, with high probability,
$\operatorname{Re}\left\langle h, \nabla \operatorname{Obj}\left(x_{\text {true }}+h\right)\right\rangle=\frac{4}{m} \sum_{k=1}^{m}\left(2 \operatorname{Re}\left(\overline{\left\langle x_{\text {true }}, f_{k}\right\rangle}\left\langle h, f_{k}\right\rangle\right)^{2}\right.$

$$
\left.+3 \operatorname{Re}\left(\overline{\left\langle x_{\text {true }}, f_{k}\right\rangle}\left\langle h, f_{k}\right\rangle\right)\left|\left\langle h, f_{k}\right\rangle\right|^{2}+\left|\left\langle h, f_{k}\right\rangle\right|^{4}\right)
$$

(Concentration inequalities)

Idea of proof

For a fixed h, with high probability,
$\operatorname{Re}\left\langle h, \nabla \operatorname{Obj}\left(x_{\text {true }}+h\right)\right\rangle=\frac{4}{m} \sum_{k=1}^{m}\left(2 \operatorname{Re}\left(\overline{\left\langle x_{\text {true }}, f_{k}\right\rangle}\left\langle h, f_{k}\right\rangle\right)^{2}\right.$

$$
\left.+3 \operatorname{Re}\left(\overline{\left\langle x_{\text {true }}, f_{k}\right\rangle}\left\langle h, f_{k}\right\rangle\right)\left|\left\langle h, f_{k}\right\rangle\right|^{2}+\left|\left\langle h, f_{k}\right\rangle\right|^{4}\right)
$$

$\begin{aligned} & \approx \text { its expectation } \\ \begin{array}{r}\text { (Concentration } \\ \text { inequalities })\end{array} & =4\left(3\left|\left\langle x_{\text {true }}, h\right\rangle\right|^{2}+\|h\|^{2}\right. \\ & \left.+3\left\langle x_{\text {true }}, h\right\rangle\|h\|^{2}+2| | h \|^{4}\right)\end{aligned}$

Non-convex methods with good initialization

Idea of proof

For a fixed h, with high probability,
$\operatorname{Re}\left\langle h, \nabla \operatorname{Obj}\left(x_{\text {true }}+h\right)\right\rangle=\frac{4}{m} \sum_{k=1}^{m}\left(2 \operatorname{Re}\left(\overline{\left\langle x_{\text {true }}, f_{k}\right\rangle}\left\langle h, f_{k}\right\rangle\right)^{2}\right.$

$$
\left.+3 \operatorname{Re}\left(\overline{\left\langle x_{\text {true }}, f_{k}\right\rangle}\left\langle h, f_{k}\right\rangle\right)\left|\left\langle h, f_{k}\right\rangle\right|^{2}+\left|\left\langle h, f_{k}\right\rangle\right|^{4}\right)
$$

$\begin{aligned} & \approx \text { its expectation } \\ \begin{aligned} \text { (Concentration } \\ \text { inequalities })\end{aligned} & \begin{aligned} &=4\left(3\left|\left\langle x_{\text {true }}, h\right\rangle\right|^{2}+\|h\|^{2}\right. \\ &\left.+3\left\langle x_{\text {true }}, h\right\rangle\|h\|^{2}+2| | h \|^{4}\right)\end{aligned}\end{aligned}$

$$
\geq \frac{5}{2}\|h\|^{2}
$$

Idea of proof

For a fixed h, with high probability,
$\operatorname{Re}\left\langle h, \nabla \operatorname{Obj}\left(x_{\text {true }}+h\right)\right\rangle=\frac{4}{m} \sum_{k=1}^{m}\left(2 \operatorname{Re}\left(\overline{\left\langle x_{\text {true }}, f_{k}\right\rangle}\left\langle h, f_{k}\right\rangle\right)^{2}\right.$

$$
\left.+3 \operatorname{Re}\left(\overline{\left\langle x_{\text {true }}, f_{k}\right\rangle}\left\langle h, f_{k}\right\rangle\right)\left|\left\langle h, f_{k}\right\rangle\right|^{2}+\left|\left\langle h, f_{k}\right\rangle\right|^{4}\right)
$$

$\begin{aligned} & \approx \text { its expectation } \\ \begin{aligned} \text { (Concentration } \\ \text { inequalities })\end{aligned} & =4\left(3\left|\left\langle x_{\text {true }}, h\right\rangle\right|^{2}+\|h\|^{2}\right. \\ & \left.+3\left\langle x_{\text {true }}, h\right\rangle\|h\|^{2}+2| | h \|^{4}\right)\end{aligned}$

$$
\geq \frac{5}{2}\|h\|^{2}
$$

It holds for all $h \in B(0,1 / 8)$ by a union bound argument.

Related literature

The same method
Good initialization + gradient descent has been used to develop algorithms for related non-convex problems ("low-rank matrix recovery problems").

Examples

- Matrix sensing
[Zhao, Wang, and Liu, 2015]
- Matrix completion
[Jain, Netrapalli, and Sanghavi, 2013]
- Sparse PCA
[Chen and Wainwright, 2015]

The previous proof strongly relied on the use of a carefully chosen initial point.

Is it an artifact of the proof technique, or is it really necessary to carefully choose the initial point?

For some related problems, it has been shown that non-convex algorithms can succeed regardless of their initial point in certain regimes :

- Matrix sensing
[Bhojanapalli, Neyshabur, and Srebro, 2016]
- Matrix completion
[Ge, Lee, and Ma, 2016]
- Phase synchronization
[Boumal, 2016]

Non-convex algorithms with arbitrary initialization
Theorem (Sun, Qu, and Wright [2017])
There exist $\alpha, \gamma>0$ such that, when

$$
m \geq \alpha n \log ^{3}(n)
$$

then, with probability at least $1-\frac{\gamma}{m}$,
non-convex gradient descent with the same smooth objective as previously returns a sequence $\left(x_{t}\right)_{t \in \mathbb{N}}$ such that

$$
x_{t} \xrightarrow{t \rightarrow+\infty} x_{\text {true }},
$$

except possibly for x_{0} in a set with zero Lebesgue measure.

Non-convex methods with arbitrary initialization
Why is it possible?

Why is it possible?

For this non-convex function, the set of "bad initial points"
has non-zero Lebesgue measure.

Why is it possible?

For this non-convex function, the set of "bad initial points"
has non-zero Lebesgue measure.

Why is it possible?

For this non-convex function, the set of "bad initial points" has non-zero Lebesgue measure.

This non-convex function has no bad initial point.

Why is it possible?

For this non-convex function, the set of "bad initial points" has non-zero Lebesgue measure.

This non-convex function has no bad initial point.

$\frac{\text { Non-convex met }}{\text { Idea of proof }}$

Principle : show that there is no point in which gradient descent can get stuck, unless it starts from a zero measure set.

Show that for any z that is not the solution :

- Either $\nabla \operatorname{Obj}(z) \neq 0: z$ is not a critical point.
- Or z is a critical point, but an unstable critical point.

Idea of proof

When is a critical point z unstable?
\rightarrow At least when the Hessian $\nabla^{2}(z)$ has a (strictly) negative eigenvalue.
[Lee, Simchowitz, Jordan, and Recht, 2016]

Show that for all z that is not the solution,

$$
\nabla \operatorname{Obj}(z) \neq 0 \quad \text { or } \quad \lambda_{\min }\left(\nabla^{2} \operatorname{Obj}(z)\right)<0 ?
$$

Non-convex methods with arbitrary initialization
Idea of proof

$$
\nabla \operatorname{Obj}(z) \neq 0 \quad \text { or } \quad \lambda_{\min }\left(\nabla^{2} \operatorname{Obj}(z)\right)<0 ?
$$

Split \mathbb{C}^{n} in zones:

- Zone 1 : when $\|z\|$ is small or $\left\langle x_{\text {true }}, z\right\rangle \approx 0$,

$$
\nabla^{2} \operatorname{Obj}(z) \cdot\left(x_{\text {true }}, x_{\text {true }}\right)<0
$$

- Zone 2 : when $\|z\|$ is large,

$$
\langle\nabla \operatorname{Obj}(z), z\rangle \neq 0
$$

- Zone 3 : when $\|z\|$ is medium, and $\left\langle x_{\text {true }}, z\right\rangle \not \approx 0$,

$$
\left\langle\nabla \operatorname{Obj}(z), z-x_{\text {true }}\right\rangle \neq 0
$$

Idea of proof

Zone 1 : show that when $\|z\|$ is small or $\left\langle x_{\text {true }}, z\right\rangle \approx 0$,

$$
\nabla^{2} \operatorname{Obj}(z) \cdot\left(x_{\text {true }}, x_{\text {true }}\right)<0 ?
$$

Same principle as before

- Write the expression of $\nabla^{2} \operatorname{Obj}(z) .\left(x_{\text {true }}, x_{\text {true }}\right)$.
- Compute its expectation, and show that it is negative.
- With concentration inequalities, show that $\nabla^{2} \operatorname{Obj}(z) .\left(x_{\text {true }}, x_{\text {true }}\right)$ is close to its expectation.

Non-convex methods with arbitrary initialization
Does it work for other algorithms?
For alternating projections, one can show that bad critical points (more or less) disappear, with high probability, when

$$
m \geq \alpha n^{2}
$$

This is much worse than for smooth gradient descent.

Does it work for other algorithms?
For alternating projections, one can show that bad critical points (more or less) disappear, with high probability, when

$$
m \geq \alpha n^{2} .
$$

This is much worse than for smooth gradient descent.

(Dim m at which no bad critical points exists with proba $1 / 2$.)

Non-convex methods with arbitrary initialization
Alternating projections with random initialization Nevertheless, starting from a random initial point, alternating projections seem to succeed even when $m=O(n)$.

Value of m for which success probability is 50%.

Apparently, there are bad critical points, but their attraction basin is small.
\Rightarrow If the initialization is chosen at random, the probability to land in one of these attraction basins is small.
Tentative illustration in 3D

Numerical results

Median error as a function of m / n for $n=64$.

Conclusion

Summary

Today, we have discussed non-convex methods.

- Almost the same theoretical guarantees as convexification techniques.
- Simpler and faster to implement.
- Theoretical analysis is more involved.

Open questions

- Better understanding of the importance (or not) of the initialization method?
Why don't all algorithms behave the same with this respect?
- Incorporate the structure of x in the reconstruction algorithms?
[Soltanolkotabi, 2017]
- Extend these algorithms to non-random measurement vectors f_{1}, \ldots, f_{m} ?

